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Abstract and Key Words

Abstract — The first chapter of this thesis focuses on the synthesis and reactivity of
cyclopropane hemimalonates. The cyclopropane hemimalonates can easily be
synthesized from 1,1-cyclopropanediesters. The reactivity of cyclopropane
hemimalonates with indole under ultra-high pressure conditions leads to ring opened
adducts that are complementary to previous research in the Kerr group. The tandem ring
opening decarboxylation reaction of cyclopropane hemimalonates led to the synthesis of
y-aminobutyric acid analogues. When an external nucleophile was not present, the
cyclopropane hemimalonates could rearrange to form butyrolactones in good to
excellent yields. The stereochemical integrity of the cyclopropane hemimalonate is
retained through this process, which is not usually seen in cyclopropane reactivity.

The second chapter describes the progress towards the synthesis of Kainic acid.
While the progress towards this natural product appeared to be going well, after closer
analysis of the products, a new reactivity of diazo species and cyclopentadiene was
realized.

In the third chapter, the progress towards the synthesis of Actinophyllic acid is
provided. Synthesis of advanced intermediates was completed, however the key

formation of a 1,4-dicarbonyl species of the pyrrolidine ring eluded this study.
Key Words: Cyclopropanediesters, Cyclopropane Hemimalonate, y-aminobutyric acid,

Butyrolactone, Methodology, Natural Product, Kainic Acid, Pyrrolidine, Actinophyllic
acid, Total Synthesis
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Chapter 1 involves some collaborative work with Huck Grover. In Section 1.6,
Huck completed the syntheses of the electron neutral and electron-poor aryl products. In
Section 1.7, Huck completed the synthesis of the electron-rich aryl butyrolactones and
the total synthesis of (R)-(+)-dodecan-4-olide, while | completed the degradation studies
to determine the rotation and the enantiomeric excess of the starting material and
product for the total synthesis. The total synthesis has been placed in this thesis to

provide the application of the transformation.
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Chapter 1 The Synthesis and Reactivity of Cyclopropane Hemimalonates

Chapter 1 describes the development of a new type of donor-acceptor
cyclopropane and the expansion of current group methodology through the nucleophilic
ring opening of cyclopropane hemimalonates with indole under ultra-high pressure
conditions. A brief overview of the structure and bonding of cyclopropanes as well as
their reactivity with indole and dipoles to form five-membered rings will be provided.
This is followed by the ring opening of cyclopropanes to form y-aminobutyric acid
(GABA) products and the synthesis of y-butanolides from cyclopropanes. The research
presented in Section 1.5 was completed by myself alone and the results have been
published in a peer reviewed journal.! Reproduced in part with permission from Emmett,
M. R.; Kerr, M. A. Org. Lett. 2011, 13, 4180-4183. Copyright 2011 American Chemical
Society. The research presented in Sections 1.6 and 1.7 was completed in collaboration
with Huck Grover. The results from Sections 1.6% and 1.7° have been published in peer
reviewed journals. Section 1.6 was reproduced in part with permission from Emmett, M.
R.; Grover, H. K.; Kerr, M. A. J. Org. Chem. 2012, 77, 6634-6637. Copyright 2012
American Chemical Society. Section 1.7 was reproduced in part with permission from
Grover, H. K.; Emmett, M. R.; Kerr, M. A. Org. Lett.2013, 15, 4838-4841. Copyright
2013 American Chemical Society.

Section 1.1 Introduction
Section 1.1.1 Structure and Bonding of Cyclopropanes

Cyclopropanes are three-membered carbocycles that display a variety of different
reactivity. Simplistically they are drawn as equilateral triangles with bond angles of 60°,
which is a large deviation from the standard tetrahedral bond angle of 109.5. Due to the
constraints on this ring system, it is believed that the electron densities of the cyclopropyl
bonds are off-center and resemble more of a banana-type bond*. This bonding
phenomenon has been used to explain the observation that cyclopropanes display
reactivity common to olefins®. Though these three membered rings have a large amount
of angular ring strain, 115 k/mol,® the bonds are kinetically inert without substitution or
activation. The substitution pattern about the three membered rings governs the reactivity

of these molecules and they are classed as such: acceptor, donor or donor-acceptor
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cyclopropanes. Acceptor groups are typically electron-withdrawing groups with the
ability to stabilize an adjacent negative charge through resonance. Examples include
carbonyls, nitro or sulfonyl groups. Acceptor cyclopropanes 1.1 pull electron-density out
of the ring, which can allow nucleophilic attack vicinal to the acceptor group (Scheme
1.1, equation 1). The donor class of cyclopropanes provides electron density to the
cyclopropane ring, and hence gives the ring nucleophilic character. The ring-opening
event creates a positive charge geminal to the donor group 1.5, which stabilizes the
charge, and allows for the addition of a nucleophiles at the geminal carbon 1.6 (Scheme
1.1, equation 2). The donor-acceptor class 1.7 highlights the best features of each of the
previous classes, activating the ring in a synergistic fashion to allow a push-pull type

mechanism to allow formation of a 1,3-dipole 1.8.

A - +E* =
_ % — e NOY™ A —/ A O
Nu ~—7*

11 1.2 1.3

D o X
(\A , NN — E/\)\D 2)
E+

14 15 1.6
D,
-
)>A -
R
1.7 1.8

Scheme 1.1: The Reactivity of Acceptor, Donor and Donor-acceptor Cyclopropanes

This dipole can react with another dipole to form annulated products, or it can simply
react with a nucleophile to form acyclic products. Donor-acceptor cyclopropanes were

first investigated in the 1960s and 1970s primarily by the groups of Stork’° and

15-16

Danishefsky™ ™, but it wasn’t until the 1980s when the groups of Wenkert and

Reissig'® investigated these molecules did they come to the forefront of organic
chemistry. The ring opening of the donor-acceptor class of cyclopropanes will be the

focus of the next section.
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Section 1.2 Formation of Five Membered Heterocycles from Cyclopropanes

The ring expansion of donor-acceptor cyclopropanes have been applied to
numerous synthetic applications and have also been used to make a number of natural
products. This section will highlight the synthesis of five-membered heterocycles from

aldehydes and aldimines. The use of nitriles or isocyanates have been omitted.

Section 1.2.1 Formation of Tetrahydrofurans

Carbonyls have been shown to be suitable dipoles for the formation of
tetrahydrofurans with 1,1-cyclopropanediesters. The Christie group formed 1,2,5-
tetrahydrofurans 1.11%° from the reaction of Nicholas activated cyclopropanes 1.10 and
aldehydes 1.9 (Scheme 1.2). The alkynyl substituted cyclopropanes are complexed with
cobalt which helps stabilize the developing positive charge at the 2-position of the
cyclopropane under Lewis acid activation. Electron poor and aliphatic aldehydes
participate in this reaction, while electron rich aldehydes are not compatible with the
reaction conditions. An excess of Lewis acid is required to prevent cyclopropyl

lactonization.

AN (CO)3
o (OC)sCoZCo(CO)s BF3'OEty, DCM R0, Co
)J\ CO,Me _— |>
. ’ MeOZC“' Co
CO,Me MeO,C (CO)3
1.9 1.10 111

Scheme 1.2: Christie Group Tetrahydrofuran Synthesis

The Johnson group at the University of North Carolina has been one of the pioneers
in the field of tetrahydrofuran syntheses from cyclopropanes. They initially developed the
cyclization of aryl and vinyl cyclopropanediesters 1.12 with a variety of aldehydes 1.9
(Scheme 1.3). Under tin triflate catalysis, they received excellent yields and cis-
diastereoselectivity.?”?® However, when an aliphatic aldehyde was a desired reaction

partner tin tetrachloride was necessary to activate the cyclopropane, and under these

www.manaraa.com



conditions the diastereoselectivity was suppressed. They also explored ketones for this
reaction with their only success coming from the use of acetone. While investigating the
mechanism of this transformation, they noticed that they were getting racemization of
their starting material cyclopropanes.?® This led them to the development of a Dynamic
Kinetic Asymmetric Transformation (DyKAT) of this cycloaddition.** When using
Magnesium lodide as the Lewis acid and a chiral pybox ligand, they could form

enantioenriched products from racemic cyclopropanes.

R
Rl . . (@)
0 CO,Me Lewis acid RL
)LH —  MeOC™
R CO,Me MeO,C
1.9 1.12 1.13

Scheme 1.3: Johnson Group Tetrahydrofuran Syntheses

In 2006, the Yadav group developed cyclopropanes with an aliphatic silane as the
donor group, 1.15.3' By using the beta-silicon effect they could stabilize the generated
positive charge, under scandium triflate catalysis, to form tetrahydrofurans 1.16 with
aldehydes or cyclic ketones 1.14 (Scheme 1.4). When an acyclic ketone was used, it was
necessary to use tin tetrachloride. Once again, the diastereoselectivity was cis with

respect to the 2 and 5 positions of the tetrahydrofuran ring.

TBDPS Sc(OTf)5 or R TBDPS
o sncl, R
—»
RJ\Rl COMe MeO,C:

CO,Me MeO,C

1.14 1.15 1.16

Scheme 1.4: Yadav Group Synthesis of Tetrahydrofurans
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Section 1.2.2 Formation of Pyrrolidines

The analogous reaction using imines as the dipolar reaction partner has also been
a well-developed reaction. In 2005, the Kerr group developed the reaction of aldimines
and 1,1-cyclopropanediesters under ytterbium triflate catalysis to form 2,5-cis-
pyrrolidines 1.19 (Scheme 1.5).** The aldimines 1.18 were formed in situ from the parent
aldehyde 1.9 and an amine 1.17 by stirring over molecular sieves before the cyclopropane
1.12 was introduced to the reaction media. A wide variety of amines were amenable to
the reaction conditions, but the aldehyde needed to be aromatic. Also, when the
cyclopropane was unsubstituted, an aniline was necessary as the amine partner to form

the pyrrolidine ring.

RZ
COZMe
co,Me . R
0 4 AMs N 1.12 RaN
W A e .
R "H  toluene RISy Yb(OTH;80°C  MeOCh
s .
MeO,C
117 1.9 1.18 119

Scheme 1.5: Kerr Group Pyrrolidine Synthesis

The Tang group also developed a similar pyrrolidine synthesis using scandium
triflate as their Lewis acid and dichloromethane (DCM) as their solvent.® Interestingly in
their study, ytterbium triflate was not a catalyst that allowed their reaction to proceed.
Once again a cis-diastereoselectivity was observed for this cycloaddition. Following their
cyclizations of aldehydes with cyclopropanes, the Christie group also developed the
synthesis of pyrrolidines 1.20 with the formation of aldimines 1.18.3* Once again they
used Nicholas activated cyclopropanes 1.10 for these cyclizations. Though only a few
examples were described in this report, the dependence on the temperature of the reaction
was also studied. While the temperature used did not affect the selectivity of the reaction,

only aromatic aldehydes could be used.
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AN R (CO)
0OC)3;Co=Co(CO 3
N R (OC)sCoeColCO)s BF3'OEt, DCM RGN Co
cooMe ~—m————
1)'\ Meozclh |>
Rl "H Co
CO,Me MeO,C (CO)3
1.18 1.10 1.20

Scheme 1.6: Christie Group’s Analogous Pyrrolidine Synthesis

Section 1.3 Ring Opening of Cyclopropanes to Form Acyclic Adducts
Section 1.3.1 Ring Opening of Cyclopropanes with Indoles

While the cycloadditions of dipoles and cyclopropanes have been thoroughly
investigated, the ring opening of cyclopropanes with various nucleophiles to form acyclic
adducts has not been taken advantage of. The Kerr group has been interested in donor-
acceptor cyclopropanes since 1997, when they discovered the ring opening of
cyclopropanes 1.22 with indoles 1.21 at ultra-high pressures (Scheme 1.7).%° This work
was inspired by the ultra-high pressure reactions of indoles with electron-deficient

olefins. %

Rl
CO,R RO,C
2 i 2 CO,R
" COzR
N\ 1.22 R%
R3

—_— \ R3
N, Yb(OT)5 (cat.) N
R CHLCN R2

1.21 13,000 atm 123

Scheme 1.7: The Reaction of Substituted Indoles with Cyclopropanediesters under

Ultra-high Pressures and Lewis Acid Catalysis

Using the conditions from the previous report of Michael additions of indoles to
electron poor acceptors as a starting point, the reaction was optimized. Through a
scanning of solvents it was observed that acetonitrile was the optimal solvent.

Interestingly, when trace amounts of water were present in the mixture the reaction was
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inhibited. This is contrary to previous reports that water was a good co-solvent for
reactions at high pressures.®” It was also contrary to the fact that ytterbium triflate showed
no inhibition of Lewis acidity in the presence of water.*® A small scope was investigated
as only three cyclopropanes were tested. It is of note that the parent cyclopropanediesters
reacted more efficiently than the alkyl substituted cyclopropane, as there was no group to
stabilize the generated positive charge. Also of note was that the more electron-rich

indole substrates produced products in higher yields.

In 1999, Kerr and Keddy further investigated this newly found reactivity by
substituting the 3-position of the indole.* It was found that the cyclopropanes would ring
open as before, but instead of a re-aromatization event occurring the malonyl anion 1.25
formed would close onto the iminium ion to form a pentannulated product 1.27 (Scheme
1.8). Gratifyingly, this reaction could be easily tested due to skatole, 3-methylindole,
being commercially available. An early observation was that substitution was required at
the nitrogen of the skatole, as a mixture of pentannulated and N-alkylated products were
observed. This nitrogen was simply methylated or benzylated to solve this issue. Upon
crystallization of the adducts, it was found that the ring formation was cis and the
protecting group on the nitrogen did not affect the reaction. When there was substitution
at the 2 and 3-positions of the indole as well, hyperbaric conditions were needed to force
the reaction to proceed. It is of note that when higher temperatures were employed a C-3
to C-2 migration was observed. The substructure of the annulated product can be seen in

the core of Kopsane 1.28.
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Scheme 1.8: The Reaction of Cyclopropanediesters with Substituted Indoles

In 2007, Pagenkopf and co-workers developed a slightly different modification on
the cyclopropane and investigated their opening with indoles.”> The modification
involved increasing electron-donating ability of this group by simply using enol-ether
derived cyclopropanes 1.29, instead of using cyclopropanes with m-electron donating
groups. These more activated cyclopropanes underwent smooth ring opening and
annulation onto the 2-position of the indole ring 1.31 (Scheme 1.9). This is a nice contrast
to the previously described example as substitution is not necessary on the 3-position to
have the annulation proceed. This reaction worked smoothly for a variety of different
substituted cyclopropanes, such as cyclic ethers, exocyclic ethers or non-cyclic ethers.
When skatole was utilized, they produced addition products at the 2-position with
elimination of the ether moiety. These adducts could be treated with either base to cyclize
onto the nitrogen of the indole to form an amide or the ester could be reduced and the

resulting aldehyde could be trapped by the nitrogen to form an aminal with the nitrogen.
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OR?2 RO o
R \ M638|0Tf H,’
CO,Et N —_—
2 CO,Et
R H MeNO, H /H 2
1.29 1.30 1.31

Scheme 1.9: Pagenkopf Group Ring Opening of Cyclopropanes with Indoles

In 2009, the Kerr group developed a new concept where they could tether a
nucleophile and an orthogonal electrophile together to receive pyrans*® and piperidines.*!
In 2011, the Kerr group extended this concept by attaching an alkyne to the 2-position of
the indole ring 1.32 (Scheme 1.10).** With the ring-opening process already being well
developed in the group, the challenge became whether or not the same Lewis acid could
be oxophilic enough to activate the diesters and soft enough to activate the alkyne
towards cyclization to give 1.33. With the previous methodologies already developed, it
didn’t take long to find that the optimal catalyst to complete both reactions was zinc
triflimide. This reaction worked well for a wide scope of different cyclopropanes 1.12,
with the parent cyclopropanediesters proceeding in a 14% yield. An investigation into the
substitution pattern on the alkyne as well as the mechanism of the reaction was

investigated.

R Zn('\lDTéZE)2 (SﬂmOl ") . CO,Me
, retiux 2
[><C02Me R‘_©\/\\/ — > N\ co,Me
CO,Me N R 2
R? N
RZ
1.12 1.32 1.33

Scheme 1.10: Kerr Group Tandem Indole Ring Opening/Conia-ene Sequence

In 2013, Johnson developed a DyKAT in which they took racemic cyclopropanes
and could open them with indoles to receive enantioenriched adducts (Scheme 1.11).* As
the Johnson group has been well versed on DyKAT reactions of donor-acceptor

cyclopropanes, they started with their standard Mgl, pyBox catalyst, and tested the role of
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protecting groups on indole. They quickly learned that they needed to temper the
reactivity of the indole so that the racemization of their starting cyclopropane was a
competitive process to the indole alkylation. After optimization, it was found that a TBS-
protected indole 1.34 worked the best for this process. In their substrate scope, they found
that a wide variety of cyclopropanes would undergo this DyKAT with good to excellent
enantiomeric ratios. The DyKAT is working by a type | method; the catalyst combines
with their starting material (cyclopropane in this case) and one of the diastereomeric
metal complexes reacts faster than the other. This was verified through a test study where
they took the racemic and both enantiomers of the phenyl-substituted
cyclopropanediesters and tested them under their reaction conditions and what was
observed was that the S-enantiomer of their starting material reacted approximately 5
times faster than the R enantiomer.

R
R CO,Me
CO.,Me (pybox)Mgl, (cat)
B 0 s g R
N N
CO,Me TBS DyKAT TBS
1.12 1.34 1.35

Scheme 1.11: Johnson Group DyKAT Ring Opening of Cyclopropanes with Indoles

In 2013, Waser proposed a different donating group on the cyclopropane in order
to furnish reactivity.* The idea was analogous to the Pagenkopf cyclopropane example
(Scheme 1.9), where they put an amine functionality as the donating group for the
cyclopropanes. This worked as both an advantage and a disadvantage as the amine
products formed could easily undergo a gramine fragmentation to form various di-
indolemethanes. They found that if they could increase the reactivity of the cyclopropane
so that it was faster than the di-indolemethane formation, they could inhibit the latter
process. They attempted to adjust the electronics on the phthalimide group to no avail.
The only other option was to adjust the accepting group of the cyclopropane. By
changing the diester moiety to a di-trifluoroethylester moiety 1.36, they could sufficiently
increase the alkylation reactivity (Scheme 1.12). With this modification in hand they
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could produce a wide variety of different indole adducts. It is of note that when they used

the skatole derived indole in this case, they did not see pentannulation, but simple C-3 to

X,

C-2 migration of the ring opened framework.

O

R2 r2N CO,CH,CF3
N
Sc(OTf)3, Et,0
o 1 CO,CH,CF4 R!—ED\/\Sle (OTh)s, Et, _ RMCOZCHZC%
CO,CH,CF4 N N
R R
1.36 137 1.38

Scheme 1.12: Waser Group Ring Opening of Amino-cyclopropanes with Indole

Section 1.3.2 Ring Opening of Cyclopropanes with Amines to form gamma-

aminobutryic acid (GABA) analogues

In 1986, Schneider developed a reaction in which donor-acceptor cyclopropanes
could be opened by amines to form GABA analogues.*® By treating the reaction with a
1:1 mixture of amine and diethylaluminum chloride, they obtained aminolysis of the
cyclopropane 1.40. When this ratio was not equivalent, the primary product of the
reaction was aminolysis of the esters on the cyclopropane. They proposed that the
diethylaluminum and the amine make a complex, which then reacts with the
cyclopropane 1.39. This reaction worked well for a variety of different cyclopropanes and
amines, however when the cyclopropane was alkyl substituted the yield suffered. It is of
note that when they used a 2,2-disubstituted cyclopropane they did receive a modest yield

over their ring opened product.

CO,R? Et,AI'HNR, NR, CO,R?
—_—
COzRZ Rl COzRZ

Scheme 1.13: Schneider’s Aminolysis of Cyclopropanes
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In 2008, Charette and co-workers set to open donor-acceptor cyclopropanes with
a variety of different amines.*’ Originally, they found that they could take different
cyclopropanes 1.41 and thermally open them with aniline, but if they started with an
enantioenriched cyclopropane they lost selectivity through the course of the reaction
(Scheme 1.14). This suggests a thermal racemization of their starting material in the
absence of a Lewis acid. To prevent this issue, they decided to investigate Lewis acid
catalysis, in order to lower the temperature of the reaction. They found that nickel
perchlorate was the optimal catalyst and they used it as their catalyst for the scope of the
reaction (Scheme 1.14). Though they did not explore a wide variety of cyclopropanes,

they tested a vast number of amines 1.42 with success (anilines, secondary amines,

indoline, etc.)
R

RL .R?

2 N COzMe
R Ni(ClO4)2'6H20
CO,Me L NH - NO»
% R DCM, rt, 17 h R
NO,
1.41 1.42 1.43

Scheme 1.14: Charette’s Ring Opening of Cyclopropanes with Amines

In 2012, Tang further advanced this field of donor-acceptor cyclopropane
chemistry by developing a nickel catalyzed enantioselective ring opening of
cyclopropanes 1.44 with amines 1.42 (Scheme 1.15).*® While the previous methodology
by Charette focused on secondary amines and anilines, the goal of this project was to
asymmetrically open the cyclopropanes with aliphatic amines. This reaction gave
excellent yields and enantioselectivity for all cyclopropanes and amines used. It is of note
that when less than an extra equivalent of cyclopropane was used, a kinetic resolution
took place. The product and the recovered starting material cyclopropane could be
isolated in high yield and high enantioselectivity. This explains why the full fold excess
of cyclopropane was necessary, as only one enantiomer of the cyclopropane was reactive

when it was coordinated with the metal-ligand complex.
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2 ; RY .R?
CO,tBu R In-TOXligand N~ CO,tBu
NH 2
CO,iBu R DME, 1, 17 h R CO,tBu
1.44 1.42 1.45

Scheme 1.15: Tang’s Chiral Ligand Cyclopropane Ring Opening with Aliphatic Amines

Section 1.4 Ring Expansions of Cyclopropanes to Form Lactones

Rearrangements of cyclopropanes are a well investigated field, with the vinyl
cyclopropane rearrangement being the predominantly investigated method.***° While the
synthesis of lactones from cyclopropanes has been seen many times, very rarely is taken
advantage of. In 2005, Reiser and co-workers were working towards the core of the
Spongiane diterpenoid substructure when they used a cyclopropane ring expansion.*
With a dihydrofuran based cyclopropane for their model study, they could treat this with
HCI to induce lactonization 1.47 (Scheme 1.16). This idea was a modification of the
previously reported lactonization by Theodorakis®® and co-workers. Towards a more
decorated substructure they need to reflux 1.46 in acid to induce the rearrangement.

H HCI
MeO,C ~ ;O}S 1,4-dioxane Meozcm
_———
R H R
146 1.47

Scheme 1.16: Reiser’s Lactone Formation

In 2010, Mead and co-workers employed a lactonization of cyclopropanated 2H-
chromenes 1.48 under Lewis acid catalysis (Scheme 1.17).>® Good yields of lactones 1.49
were isolated by this method, but 50 mol% of catalyst was necessary for this reaction to
occur. It was proposed that the t-butyl ester was de-alkylated under the acidic conditions

and the acid that was formed cyclized onto the benzylic position of the chromene.
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X

Rl
COLtBU | ewis acid

MeO (@] MeO

1.48
Scheme 1.17: Mead’s Lactone Formation

In 2012, Boysen reported the cyclopropanation of indoles that were followed by
ring-opening and lactonization.>® Interestingly, in this case the lactonization was not
mediated by an external acid, but by using an intramolecular acid. When they removed
the Boc protecting group from 1.50 under acidic conditions, the cyclopropane opened and
left an indolenine product 1.51. The ester was then saponified and then a cyclization

event occurred to form the desired lactone 1.52 (Scheme 1.18).

Me  _co,Et ve (P2 NaOH, EtOH, Me O
TFA € H,0
- —  2F o)
N H DCM 4 H

N
Boc N H

1.50 1.51 152
Scheme 1.18: Boysen’s Stepwise Lactone Formation

In 2013, Corey described the synthesis of fused lactones from fused
cyclopropanes. In multiple steps they could make their desired starting materials, then a
triflic acid mediated ring expansion/lactonization event occurred.® This skeletal
rearrangement worked well for a variety of different substrates under these acidic
conditions to form a variety of different ring systems; an example is shown in Scheme
1.19.
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Scheme 1.19: Corey’s Tricyclic Lactone Formation

Section 1.5 Ring Opening of Cyclopropane Hemimalonates by Indole

Due to the presence of indole as a core structure in numberous pharmaceuticals
efficient means of functionalization remain as a challenge in synthetic organic
chemistry.”®>® With the Kerr group’s history of opening 1,1-cyclopropanediesters with
indole (vide supra), we were interested in a new mode of activation for cyclopropanes.
Inspired by the work of Dennis Hall (Scheme 1.20),>° we proposed that if we simply
saponify one the esters on our cyclopropane perhaps we could activate it towards ring
opening with a boronic acid.
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Scheme 1.20: Indole Ring Opening Project Inspiration

Section 1.5.1 Results and Discussion
Section 1.5.1.1 Reaction Optimization

Having a vast library of cyclopropanes at hand, we attempted to replicate the
conditions developed by Hall for our reaction, omitting the amine addition following the
initial reaction. We used 2-bromophenylboronic acid as our catalyst, 1-methylindole 1.61
as our nucleophile and the phenylcyclopropane hemimalonate 1.58d for our
cyclopropane; unfortunately the reaction did not proceed at room temperature (Scheme
1.21). We used the phenyl cyclopropane hemimalonate as our test substrate, as in most of
our methodologies this is the substrate which best describes the reactivity of this class of
molecules. We switched the solvent from DCM to acetonitrile and observed trace product
by NMR spectroscopy. With access to an ultra-high pressure reactor and given the
previous success in the group using these conditions (vide supra), we attempted to
modify the original conditions replacing the Lewis acid with the boronic acid. To our
delight, this reaction did in fact work to give 1.62, in a modest 52 % vyield.
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HO-_.OH
Os5-0

Br
MeO,C
Ph Ph
A\ W

Me COH CH4CN

A\
N
Me
1.61 1.58d 1.62

Pressure: ambient (trace)
13 kbar (52%)

Scheme 1.21: Attempted Ring Opening Using a Boronic Acid as a Catalyst

While in the process of optimizing this new activation, we attempted the reaction
without a boronic acid present at ultra-high pressures and we obtained a 70 % yield of our
desired product after 2 days at 13 kbar. Therefore, the boronic acid was in fact
unnecessary for the reaction to proceed and if anything it may be hindering the reaction.
With this being the first reactivity of cyclopropane hemimalonates, we went back and
looked at reaction conditions at ambient temperature and pressures. No reactivity was
observed from room temperature to refluxing in acetonitrile. When we attempted the
reaction using a microwave reactor (table 1.1, entry 3), we also saw no reactivity.
Lowering the stoichiometry of the indole starting material, resulted in incomplete
reactions over the 2 days for the reaction. We then decided to look back at our original
entry into this field and were gratified to find the 1,1-cyclopropanediesters did not
undergo this reaction in the absence of a Lewis acid. In order to determine whether both
the ester and the acid were necessary for the reactivity we tried a cyclopropane with only
an acid functionality as the electron-withdrawing group and this also did not undergo the
ring opening event. Finally, we tried heating the reaction only to realize that the reaction
time could be substantially decreased when heated to 50 degrees (2 days to 1 hour, table
1.1 entry 8). We could also lower the equivalents of indole down to 1.2 and did not see an

appreciable decrease in yield.
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Table 1.1: Optimization Study for Ring Opening Reaction

Ph
@ P CHaCN v
N b< IR
Me Y N
Me
1.61 1.63 1.64
Entry  Cyclopropane  Temp. Indole  Conditions Conversion Yield
(1.64) (°C) Equiv. (by NMR)
1 X=CO,Me 25 2 24 h 0% N/A
Y=CO;H
2 X=CO,Me 82 2 24 h 0% N/A
Y=CO,H
3 X=CO,Me 80 2 30 min, 0% N/A
Y=CO,H mw
4 X=CO,Me 25 2 48 h, 100 % 70 %
Y= CO;H 13 kbar
5 X=CO,Me 25 1.2 48 h, 50 % Not
Y= CO;H 13 kbar Determined
6 X=Y= 25 2 48 h, 0% N/A
CO;Me 13 kbar
7 X =CO;H 25 2 48 h, 0% N/A
Y=H 13 kbar
8 X=CO;Me 50 2 1h, 100 % 76 %
Y= CO;H 13 kbar
9 X=CO;Me 50 1.2 1h, 100 % 73%
Y=CO;H 13 kbar

Section 1.5.1.2 Synthesis of Cyclopropane Hemimalonates
With our optimal conditions in hand (Table 1.1, entry 9), it was necessary to now

create a library of cyclopropane hemimalonates, which were prepared in methanolic
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sodium hydroxide. While we could form the cyclopropane with no substituents, we were
also able to form a vast number of cyclopropane hemimalonates that were vicinally
substituted with alkyl, aryl, heteroaryl and vinyl groups, all formed in modest to excellent
yields (Scheme 1.22). The saponification occurs at the ester that is trans to the vicinal

cyclopropyl substitution with reasonable diastereoselection.®

MeOzc; ;Cone NaOH MeO,C 4 nCOH
ﬁ
1.12 158a]

Me0,C ~COZH

MeO,C ~CO-H
MeO,C, CO,H 2 N2 ;
MeoZCA\\COZH MeOZC: ‘\\COZH N A

1.58a 56% 1.58b 97% 1.58¢ 90% 1.58d 96% 1.58e 92%
MeO,C(_~COH MeO,C _~COH MeO,C ~CO2H MeO,C ~COH  Mme0,c, CO,H
¢ DA C%
\ |
MeO o Cl Br
1.58f 95% 1.58g 99% 1.58h 81% 1.58i 96% 1.58 97%

Scheme 1.22: Synthesis of a Library of Cyclopropane Hemimalonates

Section 1.5.1.3 Investigating the Scope of the Reaction

Looking into the scope of this new reaction, we first investigated what
substitution patterns would be tolerated on our indole species (Scheme 1.23). For the
most part the reaction was tolerant to all substitution patterns that we tried. Due to the
instability of the 5-methoxy-1-methylindole, it was unsurprising that only a modest yield
was obtained for 1.65b. The most important thing to note was that indoles with no
substitution at the nitrogen gave the highest yields of all the substituted examples.
Unsurprisingly, when the Boc protected indole was used the reactivity of the indole was
suppressed and no productive results were obtained. Methyl substitution at the 2-position

1.65h appeared to enhance the reactivity of the indole, presumably by stabilizing the
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iminium ion that was formed by the ring opening reaction. Skatole, 3-methylindole, was

unsuccessful in completing this transformation.

Ph
b’COZMe MeO,C
7 Z"N~COH
R2 CO,H Ph
N CH3CN N—gs
R 50°C / 13 kbar N
Rl
1.21 1.65a-i
MeOZC MeOZC MeOZC MeOZC
CO.H CO,H CO,H CO,H
Ph Ph Ph Ph
MeO Br
N\ \ N e N
N N N N
Me Me Me Me
1.65a 76% 1.65b 58% 1.65c 87% 1.65d 67%
MeO,C MeO,C MeO,C MeO,C MeO,C
CO.H COH COoH COH COoH
Ph Ph Ph Ph Ph
Me MeO
\ \ \ N—e \
N N N N N
Bn H H H H
1.65e 68% 1.65f 81% 1.659 87% 1.65h 97% 1.65i 92%

Scheme 1.23 Variation of the Indole Nucleophile

With indole appearing to be the optimal nucleophile, we decided to test the scope
of cyclopropanes that could be utilized in this reaction. Aryl and heteroaryl cyclopropane
substitution was well-tolerated giving good to excellent yields of products. Unfortunately
the vinyl cyclopropane 1.58b, polymerized under the reaction conditions. Alkyl 1.58c
and the parent cyclopropane 1.58a failed to undergo the reaction. This is consistent with
the cyclopropyl substitution being able to stabilize the developing positive charge in the

reaction transition state (Scheme 1.24).
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R
CO,Me
ID‘ MeO,C

TOo,H o CO,H
—>
N
H CH4CN N\
50°C / 13 kbar N
H
1.30 1.65j-0
MeO. (o) Cl Br
CO co,Me O CO;Me (() co,Me O co,Me O CO,Me
CO,H CO,H CO,H CO2H CO,H
o oo o o o
N N N N
H H H N H
1.65] 65% 1.65k 72% 1.65l 86% 1.65m 74% 1.65n 73%
CO,Me
9 (2:o H
2 CO,Me MeO,C «CO,H
S > CO,Me ZEANT2
CO,H 2
N\ CO,H
N 1.58a 1.58¢c 1.58b
H no reaction observed polymerization observed

1.650 50%

Scheme 1.24 Variation of the Cyclopropy! Electrophile

Section 1.5.1.4 Elaboration of Ring Opened Adducts and Mechanistic Discussion

We became interested in what we could do with our differentiable acceptor
groups to show the potential utility of these hemimalonate products. When the groups are
diesters the manipulations you can do to them are limited. With our acid functionality we
were able to smoothly convert the adducts to the diesters by simple esterification of the
acid with TMS-diazomethane. We were also curious as to whether or not these products
would be amenable to different transformations. We found that treatment of the
hemimalonate adduct 1.65a with trifluoroacetic anhydride (TFAA) allowed for a
cyclization onto the 2-position of the indole to produce tetrahydrocarbazoles 1.66
(Scheme 1.25). We could also treat 1.65a with diphenylphosphoryl azide (DPPA) and
what we noticed here was the isocyanate intermediate was once again trapped by the 2-
position of the indoles to form these interesting azepinoindoles 1.67 in 33 % overall yield

from cyclopropane 1.58d.
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Ph
CO,Me MeO,C
4 CO,H

“co.H Ph
N\ 1.58d
r
o \
Me CH3CN N
50°C / 13 kbar Me
1.61 1.65a

DPPA/Et;N
benzene/reflux
33% overall

TFAA/toluene
reflux/ 30 min

40% overall

Ph Ph CO,Me
CO,Me
NH
A\ N
N @) N e
Me Me
1.66 1.67

Scheme 1.25 Elaboration of Ring Opened Adduct 1.65a

While the use of ultra-high pressures to induce reactivity was unsurprising, the
fact that the reaction did not work at all thermally was quite interesting. In the Lewis acid
catalyzed reaction of the 1,1-cyclopropanediesters, thermal conditions were effective at
achieving this transformation. We propose that in fact under the ultra-high pressure
conditions, a hydrogen bonding interaction may be taking place in order to activate the

bond polarization of the cyclopropane.

Section 1.6 Tandem Ring Opening/Decarboxylation of Cyclopropane
Hemimalonates with Sodium Azide

While looking to investigate new reactivity of cyclopropanes with different
nucleophiles, it sometimes helps to look into what reactivity other three-membered rings
have. The inspiration for this project came from the azide opening of epoxides 1.68 by

61
I

Backvall®* under aqueous conditions. We proposed that if we took our newly developed
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cyclopropane hemimalonates 1.58 under these conditions, perhaps we could induce the

same ring opening transformation to form 1.70.

N3

O NaNj;, NH,CI,
AN S A R)\/OH (ref 61)
R .
MeO (CH»)20OH:H-0
1.68 (Ch2) O 1.69
MeOZC SCOzH N3 COzH
NaN3z, NH,C|, Our Proposed
> R CO,Me Idea
R MeO (CHa),0H:H,0
1.58 1.70

Scheme 1.26 New Ring Opening Proposal with Azides

Section 1.6.1 Results and Discussion
Section 1.6.1.1 Reaction Optimization

Using Bickvall’s conditions as a starting point for the reaction we obtained a 70
% yield of a ring opened product that had concurrently undergone decarboxylation 1.71.
Removal of the ammonium chloride led to a decrease in the formation of product.
Attempting to use other organic solvents that are typically used for cyclopropane
transformations led to no product whatsoever (Table 1.2, entries 4-6). We investigated
the equivalents of sodium azide and quickly realized that a slight excess led to an
increase in yield, but adding another full equivalent was unsuccessful in increasing the
yield further. Due to the elevated temperatures required we attempted the reaction in a
microwave reactor. Unfortunately while we still obtained product, it was not in an
increased yield (Table 1.2, entry 10) We also looked into the solvent ratio of 2-
methoxyethanol to water, and a 10:1 mixture gave the best results (Table 1.2, entries 11-
12). We attempted the reaction with the 1,1-cyclopropanediesters and the reaction did not
proceed. When we added a Lewis acid (ytterbium triflate) to the mixture we obtained the
ring opened diester product, but in a modest 50 % vyield (Table 1.2, entry 13).
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Table 1.2: Optimization Study for Azide Ring Opening/ Decarboxylation

Ph

' co,Me NaNg NH.CI . )Ns\/\
'/COZH solvent/ reflux ~ Ph COz2Me
1.58d 171
Entry Azide NH,CI Solvent Yield(%o)
(equiv) (equiv)
1 1 1.4 2-MeO(CH,),0H:H,0 (10:1) 70
2 1 0 2-MeO(CH,),0H:H,0 (10:1) N/A
3 1 0 2-MeO(CH,),0H 30
4 1 14 CsHs no rxn
5 1 1.4 CH3CN no rxn
6 1 14 THF no rxn
7 1.2 1.4 2-MeO(CH;),OH:H,0 78
(10:1)
8 2 1.4 2-MeO(CH,),0H:H,0 (10:1) 73
9 2 3 2-MeO(CH,),0H:H,0 (10:1) 74
10 1.2 1.4 2-MeO(CH,),0H:H,0 (10:1) 50
11 1.2 1.4 2-MeO(CH,),0H:H.0 (5:1) 74
12 1.2 1.4 2-MeO(CH,),0H:H.0 (1:1) 60
13* 1.2 1.4 2-MeO(CH,),0H:H,0 (10:1) 50
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Section 1.6.1.2 Investigating the Scope of the Reaction

With our optimal conditions in hand (Table 1.2, entry 7), we surveyed our new
library of cyclopropane hemimalonates to determine the generality of this method. The
reaction worked well for aromatic substituted cyclopropanes as well as heteroaromatic
cyclopropanes. The reaction worked extremely well with electron rich aromatic
cyclopropanes, nearing almost quantitative results for 1.71d. The yields were modest for

the electron poor aromatic cyclopropanes.

MeOZC \COZH N3
\ 2-MeO(CH>3),0H:H>0

A NaN; + NH,CI (CHa) 2 R)\/\COZMS

R reflux
1.58 1.71a-

i PP i

©/\/\CO2M9 O COuMe CO,Me

1.71a 78% 1.71b 76% 0 1.71c 87%

COzMe COzMe COzMe

5,
<,
.

MeO 1.71d 95% Br 1.71e 62% cl 1.71f 60%

CO,Me co,Me CO,Me

q,
.
i

NC 1.71g 56% 0,N 1.71h 46% 1.71i 78%

3
CO,Me
TsN 1.71j 58% S 171k 79%

Cco,Me CO,Me

é Z
Z
/
%QJZ
Z
/
%cﬂz

O 1711 63%

Scheme 1.27 Reaction Scope of the Azide Transformation

One interesting result was that even though the styrenyl cyclopropane underwent
this transformation, issues arose when we attempted to use the vinyl substituted
cyclopropane. In this example, we obtained an intractable mixture of our expected
product 1.71m and a Sy’ addition product 1.72. At this point we are not sure why
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substitution at the terminal position of the vinyl group changes the reactivity of the

cyclopropane.

MeOZC \\COZH N3

2-MeO(CH,),0OH:H,0

+ + 2)2 2

@ NaNz T NH,CI > K\/\COZMe T F CO,Me
reflux |

N3
1.58b 1.71m 1.72

Scheme 1.28 Mixture of Products when Using the Vinyl Cyclopropane Hemimalonate
1.58b

It is of note that the optically enriched phenyl cyclopropane (S)-1.58d (90% ee)
underwent this transformation with full retention of enantiopurity (vide supra) to give
(S)-1.71a. Finally, cyclopropanes where the substitution was aliphatic or unsubstituted
were unreactive under these conditions and starting material was recovered intact. To
prove that these adducts were viable precursors for GABA esters, we simply reduced
azide 1.71a to the primary amine 1.73 using palladium on carbon. It was at this point that
the enantiopurity of the product was tested as the azide-ester products were difficult to
separate by HPLC. The enantiopurity was tested by making the Mosher’s amide (vide
infra) of the amine-ester product. To determine the absolute stereochemical outcome of
the reaction, 1.73 was converted to the lactam 1.74 and the optical rotation was found to
be in agreement with literature (Scheme 1.29).%
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Ng NH,

OMe H,(1atm)/PdonC
’ COZMe
0] MeOH

1.71a l 1.73: 93%

1.NaOH/MeOH/H,0
2. HCI

0
[a]p? = -50 (c 1.00, CH,Cl,) this work N
[0]p2 = -51 (c 0.97, CH,Cl,) ref 62

Ph 1.74: 98%

Scheme 1.29 Testing of Enantiopurity and Absolute Stereochemistry

Section 1.6.1.3 Reaction Mechanism

The fact that the hemimalonates are effective substrates and the diesters are not, is
surprising to us. In our previous report in which we described the nucleophilic opening
of these species with indoles, we were able to rationalize the results by invoking a high
pressure induced intramolecular hydrogen bond between the carboxylic acid and the
ester. The effect of this would be to stereoelectronically align the carbonyls for the ring-
opening event. It is hard to make such a rationalization in this case since the reaction
takes place in a refluxing protic medium. It puzzles us then, why the carboxylic acid
moiety is a requirement for this reaction. One explanation (Scheme 1.30) is that the
reaction was proceeding via an acyl azide 1.75 which could undergo a [3,3]-sigmatropic
rearrangement to yield ketene 1.76, which in turn would be intercepted by water to
regenerate the acid. Decarboxylation of the resulting monoester 1.70 could then ensue,
yielding the observed product 1.71. We have attempted to prepare and isolate the
acylazide, and subject it to the reaction conditions in order to prove this hypothesis;

however the results were inconclusive due to extensive decomposition.
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CO,Me HN CO,Me R CO,Me
|>',, 3 ,D'
/COZH —_— R \4’//40 —_— N (C\\g!k
R
@ =N=N) .
1.58 N"® 175 1-76le0
)R\/\ CO; R CO,Me
-
N CO,Me N COH
1P 170 O °?

Scheme 1.30 Possible Mechanistic Explanation

Section 1.7 Synthesis of Butanolides from Cyclopropane Hemimalonates

In the process of optimizing the reaction of sodium azide with cyclopropane
hemimalonates, we wanted to try to react a substituted azide with our hemimalonates to
try and expand the scope of the reaction further. What we quickly realized was that
another process was taking place; the hemimalonate 1.58d was undergoing a ring

expansion rearrangement to form a butanolide 1.77 (Scheme 1.31).

MeO,C, CO,H MEO.C O
E ) _ 5
+ BnN3 + NH4C| 2 '\/|GC)(CH2)2C)HH2C)>

reflux

1.58d 1.77 66%
11 dr

Scheme 1.31 Discovery of the Cyclopropane Hemimalonate Rearrangement

Section 1.7.1 Results and Discussion
Section 1.7.1.1 Reaction Optimization

Initial attempts to optimize this reaction worked quite well obtaining an 82 %
yield of 1.77. Changing the solvent from 2-methoxyethanol to DMSO increased the yield
to 87 %. Testing other organic solvents did not help this reaction to proceed. We
attempted using a variety of salts and while reactions went to completion, they all went to

a mixture of products: the cyclized 1.77 and the decarboxyalted 1.78 butanolides.
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Unfortunately, we never obtained 1.77, as the sole product of any of these reactions.
Frustrated by this result we decided to try and optimize the reaction for 1.78 instead. The
reaction conditions were modified to more standard types of Krapcho
dealkoxycarbonylation conditions. In a two-step protocol, we were able to rearrange the
cyclopropane in one step, and then subsequently decarboxylate the product in a 65 %
yield. Desiring a one pot procedure and still maintaing a mixture of products we decided
to try and irradiate our starting materials in a microwave reactor. While DMSO was the
optimal solvent at standard thermal conditions, DMF led to our desired product in our
highest yield of 82% in the microwave reactor. We attempted this transformation as well
with the parent diester compound and while we did obtain product in a 45 % vyield,

significant decomposition of the cyclopropane was realized (Table 1.3, entry 14).

Table 1.3: Optimization Study for Hemimalonate Rearrangement

MeO,C, CO,H MeO.C o O
N 2
A > ilifo do
Ph / /

Ph Ph
1.58d 1.77 1.78
Entry Additive Solvent / Temp. (°C) Time Product
(1.4 equiv.) (h) (%)
1 NH.CI 2-MeO(CH_2),OH/reflux 2 82 1.77, trace 1.78
2 NH,CI DMSO /135 1 87 1.77, trace 1.78
3 NH,CI (5:1) DMSO:H,0/135 1 mixture
4 NaCl DMSO /135 1 mixture
5 KCI DMSO /135 1 mixture
6 LiCl DMSO / 135 24 mixture
7 NaCN DMSO /135 24 no rxn
8 MesN'HCI DMSO /135 24 mixture
9  NH4CI/NaCN DMSO /135 1/6 65 1.78
10 LiCl/ DMSO /135 24 mixture
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12

13

14

MesN'HCI
LiCl/
MesN'HCI
LiCl/
MesN'HCI
LiCl/
MesN'HCI
LiCl/
MesN'HCI

DMSO / reflux

DMSO /150, mW

DMF / 150, mW

DMF / 150, mW

24

0.66

0.66

0.66

30

mixture

711.78

821.78

451.78

Section 1.7.1.2 Investigating the Scope of the Rearrangement

Once again, having our vast library of cyclopropane hemimalonates, we were able

to explore the utility of this transformation. Both electron donating and halogen

substituted phenyl cyclopropanes underwent the butanolide formation in moderate to

excellent yields. Conversely, the electron withdrawing phenyl cyclopropanes gave only

modest yields of the desired butanolides. The heteroaromatic cyclopropanes provided

butanolides in excellent yield as did the styrenyl substituted cyclopropane. Interestingly,

for this transformation the vinyl cyclopropane was amenable to our reaction conditions.

The lower yield in this example can be explained by 1.58b being highly reactive nature

towards polymerization. Unfortunately, alkyl 1.58c and unsubstituted cyclopropanes

1.58a, do not yield the butanolide products.
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0
MeO,C, LOH LiCl, MesN-HCI
A > ©
R DMF, 150 °C, mW
R
1.58 1.78a-k
O O O O O O
o) o) o) o} o) o)
7
OMe o cl Br CN
1.78a 82 % 1.78b 90 % 1.78c 90 % 1.78d 85 % 1.78e 75 % 1.78f 53 %
0 O
0
0 0
0 o
o
o} o}
N —
Ts
COZMe
1.789 39 % 1.78h 85 % 1.78i 74 % 1.78] 80 % 1.78k 60 %

Scheme 1.32 Reaction Scope of the Butanolide Rearrangement

Section 1.7.1.3 Reaction Mechanism

To shed light onto the mechanism, optically enriched phenyl cyclopropane (-)-
1.58d was subjected to the reaction conditions (Scheme 1.33). Smooth transformation
lead to an isolated 82% yield of enriched butanolide 1.78a, with only slight erosion of
enantiomeric excess (determined by a Mosher’s ester sequence, vide infra). Optical
rotation analyses of the product support the (S) isomer butanolide being isolated.®® This
outcome suggests that the reaction occurs with retention of stereochemistry, a result

unusual in donor-acceptor cyclopropane chemistry.
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MeOLC\ FOM i, LiCl MeN HCL 7 ” _
A [a]p2 = -29.4 (c 3.0, CHCly) this work
DMF, 150 °C, pW O [a]p®® =-26.6 (c 2.4, CHCI3) ref 63
Ph
(-)-1.58a (-)-1.78a
90 % ee 82 % yield, 80 % ee

Scheme 1.33 Reaction of Optically Enriched 1.58a

It occurred to us that there were two possible mechanistic explanations for such a
transformation. The first being a solvolitic cleavage of the cyclopropane bond to form a
benzylic cation and a malonyl anion. The cation would undergo attack from the malonate
in an O-alkylation to produce the desired butanolide. A dealkoxycarbonylative event
would follow this transformation, but would have no effect on the outcome of the
reaction. Another possibility would be that the chloride anion from our salt opens the
cyclopropane to get an inversion of stereochemistry. This event could be followed by an
O-alkylation from the malonyl group with inversion again to retain the required

stereochemistry (Scheme 1.34).
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H H H
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O 0 O 0] O 0
o‘l’c_ OMe ___5 3\ “OMme
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Ph™
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Hn( inversion
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©
1.58a Cl

Sn2-like opening and double inversion
Scheme 1.34 Possible Mechanistic Pathways for the Butanolide Rearrangement

Section 1.7.1.4 Total Synthesis of (R)-(+)-dodecan-4-olide

A unique and naturally reoccurring butanolide is (R)-dodecan-4-olide 1.82.
Isolated from an array of natural sources including the pygidial glands of rove beetles,®*
fruits,®® butterfat,®® and the territorial marking fluid of the Bengal tiger,®’ dodecan-4-olide
is a small natural product which plays a role in many different biological functions.®®®
Due to this compound’s abundance in nature, dodecan-4-olide is one of the most common
butanolides targeted for small molecule synthesis.”®"* Readily available dimethyl ester
vinyl cyclopropane 1.81 was subjected to cross metathesis conditions with oct-1-ene in
the presence of Grubbs 2™ generation ruthenium catalyst to access the crude octenyl
cyclopropane. Following monosaponification, cyclopropane hemimalonate 1.58k was
isolated in an 87% yield over two steps. Hemimalonate 1.58k was then exposed to the

standard butanolide synthesis conditions and alkenyl butanolide 1.781 was isolated in
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78% yield. Reduction of the m-System proved to be the most difficult step in synthesis
resulting in over reduction of the lactone ring under standard conditions including
hydrogenation over Pd on carbon or PtO,. The n-system reduction of butanolide 1.78I
was finally achieved using tosylhydrazide as a hydrazine source allowing access to (R)-
dodecan-4-olide 1.82 in 98% yield and 94% ee (determined by a Mosher’s ester

sequence).
Me0,C 21
MeO,C. CO,Me 1) Grubbs(ll)
DCM, reflux
+ AN > =
X Z 2) NaOH, MeOH
(-)-1.81: 95 % ee 87 % yield overall 1.58l
LiCl, MegN'HCI
DMF, 150 °C, mW
78 % yield overall
O O
P TSNHNH, O
NaOAc, H,0, THF
- 2 /
98% yield
1.82: (R)-(+)-Dodecan-4-olide: 94% ee 1.78I

Scheme 1.35 Total Synthesis of (R)-(+)-dodecan-4-olide

Section 1.8 Summary and Future Work

In summary, we have been able to synthesize and develop a new type of donor-
acceptor cyclopropane and develop its reactivity. The hemimalonates do not need a
Lewis acid to activate them and they can react under transition metal free, aqueous
conditions. Under ultra-high pressure conditions, we were able to open cyclopropane
hemimalonates 1.58 with indoles to access 15 ring opened adducts 1.65 in yields ranging
from 50-97%. These adducts could also be converted to carbazoles or azepinoindoles in

short order. Taking the hemimalonates with sodium azide and ammonium chloride, we
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were able to access 12 different azido-esters 1.71 in 46-95% vyield depending on the
substrate. These azido-esters could easily be converted to GABA analogues by
hydrogenation, allowing access to a wide scope of unnatural amino acids. This
methodology has since been extended to alkynyl-aryl cyclopropane hemimalonates 1.83
to a synthesis of triazoles 1.84.”

Ny
A NH4ClI (1.4eq)
R
R 2-MeOEtOH : H,0
COzH (10:1)
CO,Me
1.83 1.84

Scheme 1.36 Extension of the Azide Methodology to Synthesize Triazoles

Without the presence of an external nucleophile, the hemimalonates 1.58, can
rearrange to form y-butanolides in 39-90% yields. This reaction allowed for the total
synthesis of (R)-(+)-dodecan-4-olide in 4 synthetic operations in a 67% overall yield. We
believe the development of the cyclopropane cross metathesis reaction has solved the
issue with alkyl cyclopropanes having sluggish reactivity towards nucleophiles. This
reaction was developed further and reactivities were compared between the alkyl and the
substituted alkenyl cyclopropanes.”

MeO,C. CO,Me AR MeO,C CO,Me
r
A G2 (1 molo) AR
CH,Cl,, reflux
1.81 1.85

Scheme 1.37 Cross Metathesis of Vinyl Cyclopropanes

In future studies, the cyclopropane hemimalonate reactivity needs to be further
investigated with attention towards cycloaddition chemistry. With their proclivity for
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decarboxylation, under the appropriate conditions a decarboxylative cycloadditions could

be possible.
Conditions R
MeOzC ‘\\COZH X X
P yo—
1
R R Rl
COZMe
1.58 1.86 1.87

Scheme 1.38 Potential Decarboxylative Dipolar Cycloaddition

Section 1.9 Experimental
General

Infrared spectra were obtained as thin films on NaCl plates using a Bruker Vector
33 FT-IR instrument. *H, *°F, and *C NMR experiments were performed on Varian
Mercury 400, Varian Inova 400 and Inova 600 instruments and samples were obtained in
CDClj; (referenced to 7.26 ppm for *H and 77.0 for *3C). Coupling constants (J) are in Hz.
The multiplicities of the signals are described using the following abbreviations: s =
singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. High resolution
mass spectra (HRMS) were obtained on a Finnigan MAT 8200 spectrometer at 70 eV.
Toluene, tetrahydrofuran (THF), ether, acetonitrile (MeCN) and dichloromethane (DCM)
were dried and deoxygenated by passing the nitrogen purged solvents through activated
alumina columns. All other reagents and solvents were used as purchased from Aldrich,
Alfa Aesar, or Caledon. Reaction progress was followed by thin layer chromatography
(TLC) (EM Science, silica gel 60 Fys4) visualizing with UV light, and the plates
developed using acidic anisaldehyde. Flash chromatography was performed using silica
gel purchased from Silicycle Chemical Division Inc. (230-400 mesh). High-pressure
reactions were carried out on a LECO™ Tempres High-Pressure chemical reactor.

Microwave reactions were performed in a 400 W Biotage Initiator 2.0 microwave reactor.
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Section 1.9.1 The Ring Opening of Cyclopropane Hemimalonates by Indole

General Procedure for the mono-sapofication of 1,1-cyclopropanediesters

Cyclopropanes were dissolved in MeOH and 1.7M NaOH (1.2 eq.) with constant
stirring. The solution was stirred for 1.5 h then was diluted with EtOAc and water to
separate layers. The aqueous layer was the acidified with 5% HCI to reach pH 2, then
extracted three times with EtOAc. The combined organic layers were washed with brine,
dried over MgSO.,, filtered and concentrated.®®

Meoch\\cogH Reagents employed: 1.12a (0.356 g, 2.25 mmol); NaOH (1.60 mL, 2.72
mmol); MeOH (2 mL); Yielded 1.58a as a clear oil, 56 % (0.181 g,

1.26 mmol). Spectral properties are identical to those previously reported.”’

MeO,C CO,H Reagents employed: 1.12b (0.541 g, 2.94 mmol); NaOH (2.25 mL, 3.50
x} mmol); MeOH (2.25 mL); Yielded 1.58b as a clear oil, 91% (0.453 g,
2.66 mmol). Spectral properties are identical to those previously reported.”

mmol); MeOH (1.2 mL); Yielded 1.58c as a clear oil, 90% (0.281 g,

1.43 mmol). *H-NMR (400 MHz, CDCls): & 3.83 (s, 3H), 2.01 (dd, J =
9.0 Hz, 3.9 Hz, 1H), 1.87-1.95 (m, 1H), 1.78 (dd, J = 8.6 Hz, 3.9 Hz, 1H), 1.55-1.62 (m,
1H), 1.08 (d, J = 7.0 Hz, 3H), 0.91 (d, J = 6.6 Hz, 3H); **C NMR (100 MHz, CDCls): & =
173.5, 172.9, 53.0, 44.2, 31.9, 28.2, 23.7, 22.1, 21.7; IR (thin film, cm): 3101, 3006,
2962, 2874, 1736, 1697, 1438, 1385, 1360, 1329, 1282, 1209, 1146, 1033, 968, 952, 907,
868, 808, 768; HRMS calc’d for CoH1404 = 186.0892, found 186.0887

MTQCOZH Reagents employed: 1.12¢ (0.337 g, 1.68 mmol); NaOH (1.20 mL, 2.04
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MeO,C .CO,H Reagents employed: diester 1.12d (1.02 g, 4.34 mmol); NaOH (3.00
mL, 5.17 mmol); MeOH (3 mL); Yielded 1.58d as a clear oil, 93%
(0.890 g, 4.04 mmol). Spectral properties are identical to those

previously reported.”

MeO,C CO,H Reagents employed: 1.12e (0.507 g, 1.78 mmol); NaOH (1.30
mL, 2.21 mmol); MeOH (1.3 mL); Yielded 1.58e as a pink oil,
92% (0.442 g, 1.63 mmol). *H-NMR (400 MHz, CDCls): & 7.90
(d, J = 8.6 Hz, 1H), 7.88-7.79 (m, 2H), 7.58-7.49 (m, 2H), 7.46-7.41 (m, 2H), 3.76 (dd, J
= 8.8 Hz, 8.8 Hz, 1H), 2.99 (s, 3H), 2.57 (dd, J = 8.6 Hz, 4.7 Hz, 1H), 2.51 (dd, J = 9.4
Hz, 4.7 Hz, 1H). *C NMR (100 MHz, CDCls): § = 173.4, 171.3, 133.2, 132.3, 130.3,
128.7, 128.6, 126.9, 126.8, 126.1, 124.9, 123.0, 52.5, 38.8, 33.4, 22.0; IR (thin film, cm-
1): 3098, 3050, 3016, 2954, 2925, 2854, 1735, 1701, 1686, 1675, 1655, 1597, 1509, 1446,
1367, 1344, 1330, 1295, 1266, 1242, 1210, 1147, 1047, 1021, 987, 973, 951, 898, 866,
843, 802, 780, 736, 702; HRMS calc’d for C16H1404 = 270.0892, found 270.0893

MeO,C, .CO,H Reagents employed: 1.12f (0.997 g, 3.77 mmol); NaOH (2.65

mL, 4.50 mmol); MeOH (3 mL); Yielded 1.58f as a white

oo powder, 95% (0.903 g, 3.61 mmol). 'H-NMR (400 MHz,

CDCly): & = 7.15 (d, J = 8.2 Hz, 2H), 6.82 (d, J = 8.6 Hz, 2H), 3.79 (s, 3H), 3.34 (dd, J =

9.0 Hz, 9.0 Hz, 1H), 3.31 (s, 3H), 2.38 (dd, J = 8.6 Hz, 4.7 Hz, 1H), 2.28 (m, 1H); *C

NMR (100 MHz, CDCl3): 6 = 172.6, 171.1, 159.1, 130.2, 125.7, 113.5, 55.2, 52.5, 39.7,

34.2, 21.1; IR (thin film, cm+): 3009, 2956, 2839, 2586, 1734, 1695, 1612, 1584, 1551,

1517, 1438, 1377, 1331, 1304, 1251, 1223, 1199, 1179, 1146, 1033, 974, 943, 902, 835,
811, 767, 704; HRMS calc’d for C13H1405 = 250.0841, found 250.0840
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MeO,C,_.CO,H Reagents employed: 1.12g (0.379 g, 1.36 mmol); NaOH (1.00

0 mL, 1.70 mmol); MeOH (1 mL); Yielded 1.58g as a yellow
<O powder, 98% (0.352g, 1.33 mmol). *H-NMR (600 MHz, CDCls):

8 6.75-6.68 (m, 3H), 5.95 (s, 2H), 3.38 (s, 3H), 3.30 (dd, J = 9.0 Hz, 9.0 Hz, 1H), 2.32
(dd, J = 8.6 Hz, 5.1 Hz, 1H), 2.23 (dd, J = 9.4 Hz, 5.1 Hz, 1H); *C NMR (150 MHz,
CDCly): & = 172.9, 170.8, 147.5, 147.2, 127.6, 122.6, 109.4, 108.0, 101.2, 52.7, 40.3,
33.9, 21.4; IR (thin film, cm+): 3096, 3011, 2959, 2899, 2698, 1737, 1685, 1609, 1506,
1495, 1440, 1330, 1240, 1212, 1147, 1104, 1074, 1037, 1020, 955, 933, 909, 899, 869,
861, 824, 809, 760; HRMS calc’d for C13H1,06 = 264.0634, found 264.0635

MeO,C CO,H Reagents employed: 1.12h (0.368 g, 1.37 mmol); NaOH (1 mL,

1.70 mmol); MeOH (1 mL); Yielded 1.58h as a clear oil, 81%

o (0.283 g, 1.11 mmol). *H-NMR (600 MHz, CDCls): § 7.29 (d, J =

8.6 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 3.37 (t, J = 8.6 Hz, 1H), 3.33 (s, 3H), 2.38 (dd, J =

8.6 Hz, 4.7 Hz, 1H), 2.32 (dd, J = 9.4 Hz, 4.7 Hz, 1H); **C NMR (100 MHz, CDCls): & =

171.5,171.4,133.7, 132.5, 130.3, 128.4, 52.6, 38.0, 34.2, 21.0; IR (thin film, cm+): 3102,

3030, 2953, 2853, 1735, 1697, 1654, 1593, 1491, 1438, 1398, 1333, 1292, 1219, 1177,

1145, 1073, 1012, 970, 943, 899, 855, 834, 813, 786, 760. HRMS calc’d for C1oH1;CIO,4
= 254.0346, found 254.0343

MeO,C, .CO,H Reagents employed: 1.12i (0.322 g, 1.03 mmol); NaOH (1.00 mL,

1.70 mmol); MeOH (1 mL); Yielded 1.58i as a white solid, 96%

5 (0.296 g, 0.988 mmol). *H-NMR (600 MHz, CDCls): & 7.42 (d, J

= 8.2 Hz, 2H), 7.10 (d, J = 8.2 Hz, 2H), 3.34 (s, 3H), 3.30 (dd, J = 8.8 Hz, 8.8 Hz, 1H),

2.33 (dd, J = 8.2 Hz, 4.7 Hz, 1H), 2.20 (dd, J = 9.4 Hz, 5.3 Hz, 1H); *C NMR (150 MHz,

CDCl3): 6 =177.8,171.3 133.0, 131.4, 131.3, 131.0, 130.6, 121.9, 52.6, 38.4, 34.1, 21.0;

IR (thin film, cm+): 3102, 3030, 2953, 2853, 1735, 1697, 1654, 1593, 1491, 1438, 1398,

1333, 1292, 1219, 1177, 1145, 1073, 1012, 970, 943, 899, 855, 834, 813, 786, 760.
HRMS calc’d for C1oH11BrO4 = 297.9841, found 297.9843
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MeO,C .COH Reagents employed: 1.12j (1.12 g, 4.66 mmol); NaOH (3.26 mL, 5.54
mmol); MeOH (3.3 mL); Yielded 1.58j as a yellow-brown oil, 97%
(1.021 g, 4.52 mmol). *H-NMR (600 MHz, CDCls): & = 7.22 (m, 1H),
6.94 (m, 2H), 3.43 (s, 3H), 3.35 (dd, J = 8.8 Hz, 8.8 Hz, 1H), 2.31 (dd, J = 8.2 Hz, 5.3 Hz,
2H), 219 (dd, J = 94 Hz, 47 Hz, 1H); “C NMR (150 MHz, CDCly):
6=171.2,170.7,137.2,127.2, 126.6, 125.5, 52.6, 35.5, 32.5, 22.2; IR (thin film, cm?):
3108, 3012, 2954, 2849, 1781, 1738, 1699, 1576, 1559, 1539, 1437, 1386, 1332, 1243
1211, 1150, 1092, 1079, 1041, 988, 932, 914, 898, 707, HRMS calc’d for C1oH1004S =
226.0300, found 226.0300

General Procedure for the Ring Opening of Cyclopropane Hemimalonates with

Indole

Indoles and cyclopropanes were measured into a length of heat shrinkable Teflon
tubing closed at one end with a brass clamp. The tube was sealed with another brass
clamp and placed in a LECO Tempres high-pressure chemical reactor and the reactor was
heated to 50 °C, then pressurized. After a period of time the mixture was depressurized
and the solvent removed. The residue was subjected to flash chromatography on silica gel

and the product isolated as an oil and mixture of diastereomers.

MeO,C CO,H Reagents employed: 1.61 (0.072 g, 0.547 mmol); 1.58d (0.100 g,
Ph 0.456 mmol); acetonitrile (3 mL); Yielded 1.65a as a red oil, 73%
N (0.117 g, 0.332 mmol). *H-NMR (400 MHz, CDCl5) Diastereomer
I\N/Ie A: 8 =9.83-9.30 (broad s, 1H), 7.56-7.49 (m, 1H), 7.43-7.21 (m,

7H), 7.13-7.05 (m, 1H), 6.94 (s, 1H), 4.37-4.29 (m, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.56-
3.48 (m, 1H), 2.97-2.87 (m, 1H), 2.77-2.66 (m, 1H); Diastereomer B: 5 = 9.83-9.30
(broad s, 1H), 7.56-7.49 (m, 1H), 7.43-7.21 (m, 7H), 7.13-7.05 (m, 1H), 6.97 (s, 1H),
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4.37-4.29 (m, 1H), 3.76 (s, 3H), 3.73 (s, 3H), 3.56-3.48 (m, 1H), 2.97-2.87 (M, 1H), 2.77-
2.66 (m, 1H); Diastereomeric mixture: *C NMR (100 MHz, CDCls) & = 175.2, 169.6,
169.6, 143.3, 143.2, 137.2, 128.5, 128.5, 127.9, 127.8, 127.0, 127.0, 126.5, 126.4, 126.1,
126.0, 121.6, 119.4, 119.4, 118.8, 116.9, 116.8, 109.1, 52.6, 52.6, 50.0, 40.5, 34.9, 34.8,
32.6 IR (thin film, cm®): 3062, 3027, 2952, 1744, 1602, 1547, 1489, 1458, 1452, 1374,
1328, 1265, 1157, 1087, 1014, 926, 740, 703; HRMS calc’d for C,1H»1NO4 = 351.1471,
found = 351.1459

MeO,C COH Reagents employed: 1.21a (0.099 g, 0.612 mmol); 1.58d

Ph (0.107 g, 0.486 mmol); acetonitrile (3 mL); Yielded 1.65b

MeO N as a reddish-brown oil, 58% (0.108 g, 0.282 mmol). 'H-
I\N/Ie NMR (400 MHz, CDCIs) Diastereomer A: 6 = 7.38-7.28

(m, 4H), 7.25-7.20 (m, 1H), 7.16 (s, 1H), 6.94-6.90 (dd, J = 9.0 Hz, 2.0Hz, 1H), 6.89-
6.85 (m, 2H), 4.29-4.19 (m, 1H), 3.76 (s, 3H), 3.71 (s, 3H), 3.70 (s, 3H), 3.50-3.44 (m,
1H), 2.92-2.81 (m, 1H) 2.70-2.59 (m, 1H); Diastereomer B: 6 = 7.38-7.28 (m, 4H), 7.25-
7.20 (m, 1H), 7.18 (s, 1H), 6.94-6.90 (dd, J = 9.0 Hz, 2.0Hz, 1H), 6.89-6.85 (m, 2H),
4.29-4.19 (m, 1H), 3.79 (s, 3H), 3.77 (s, 3H), 3.71 (s, 3H), 3.50-3.44 (m, 1H), 2.92-2.81
(m, 1H) 2.70-2.59 (m, 1H); Diastereomeric Mixture: *C NMR (100 MHz, CDCls) & =
175.1, 174.9 169.7, 169.6, 153.5, 143.2, 143.2, 132.6, 128.5, 127.9, 127.9, 127.3, 127.3,
126.7, 126.6, 126.5, 116.4, 116.4, 111.8, 111.8, 109.9, 101.4, 101.3, 55.8, 55.7, 52.6,
49.9, 40.6, 40.5, 34.8, 34.7, 32.8; IR (thin film, cm®): 2957, 2925, 1735, 1622, 1577,
1492, 1452, 1424, 1271, 1219, 1173, 1061, 1036, 796, 736, 702; HRMS calc’d for
Ca2H23NOs = 381.1576, found = 381.1589

MeO,C CO,H Reagents employed: 1.21b (0.083 g, 0.574 mmol); 1.58d (0.104 g,
Ph 0.471 mmol); acetonitrile (3 mL); Yielded 1.65c as a dark red oil,
N 87% (0.150 g, 0.409 mmol). 'H-NMR (400 MHz, CDCls)
I\N/Ie Diastereomer A: 6 = 7.58-7.54 (broad dd, J = 7.8 Hz, 2.4Hz, 1H),

7.45 (s, 1H) 7.43 (s, 1H), 7.35-7.27 (m, 3H), 7.25-7.16 (m, 2H), 7.10-7.06 (d, J = 7.8 Hz,
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1H), 4.45-4.36 (m, 1H), 3.77 (s, 3H), 3.67 (s, 3H), 3.45-3.39 (m, 1H), 3.05-2.97 (m, 2H),
2.39 (s, 3H); Diastereomer B: 6 = 7.58-7.54 (broad dd, J = 7.8 Hz, 2.4Hz, 1H), 7.45 (1s,
1H), 7.43 (s, 1H), 7.35-7.27 (m, 3H), 7.25-7.16 (m, 2H), 7.08-7.04 (d, J = 7.0 Hz, 1H),
4.45-4.36 (m, 1H), 3.67 (s, 3H), 3.59 (s, 3H), 3.45-3.39 (m, 1H), 3.05-2.97 (m, 2H), 2.39
(s, 3H); Diastereomeric Mixture: **C NMR (100 MHz, CDCls) § = 175.0, 169.9, 169.7,
144.0, 136.9, 136.9, 134.2, 134.1, 128.2, 127.4, 126.3, 126.3, 125.9, 120.4, 120.4, 119.3,
119.2, 118.8, 118.8, 110.8, 110.7, 108.7, 108.6, 52.4, 52.4, 50.4, 50.2, 39.5, 39.4, 33.2,
29.4, 10.4, 10.4; IR (thin film, cm®): 3062, 3026, 2950, 1739, 1712, 1612, 1559, 1494,
1471, 1436, 1408, 1369, 1335, 1252, 1158, 1061, 1031, 923, 740, 701; HRMS calc’d for
Ca2H23NO,4 = 365.1627, found = 365.1615

MeO,C COH Reagents employed: 1.21c (0.116 g, 0.552 mmol); 1.58d

Ph (0.101 g, 0.460 mmol); acetonitrile (3 mL); Yielded 1.65d as

Br A\ a dark yellow oil, 67% (0.132 g, 0.308 mmol); *H-NMR (400
II\\I/le MHz, CDCI;) Diastereomer A: 6 = 7.57 (d, J = 2.0 Hz, 1H),

7.32-7.28 (m, 4H), 7.25-7.18 (m, 2H), 7.13 (s, 1H), 6.93 (s, 1H), 4.22-4.15 (m, 1H), 3.71
(s, 3H), 3.70 (s, 3H), 3.44-3.38 (m, 1H), 2.83-2.72 (m, 1H) 2.68-2.57 (m, 1H);
Diastereomer B: 6 = 7.53 (d, J = 1.6 Hz, 1H), 7.32-7.28 (m, 4H), 7.25-7.18 (m, 2H), 7.11
(s, 1H), 6.90 (s, 1H), 4.22-4.15 (m, 1H), 3.76 (s, 3H), 3.72 (s, 3H), 3.44-3.38 (m, 1H),
2.83-2.72 (m, 1H) 2.68-2.57 (m, 1H); Diastereomeric Mixture: **C NMR (100 MHz,
CDCl3) 6 = 174.8, 169.6, 142.9, 142.8, 135.9, 135.8, 129.0, 128.7, 128.6, 128.6, 127.8,
127.2, 127.1, 126.7, 126.7, 124.5, 121.9, 121.8, 116.7, 116.6, 112.3, 110.7, 52.7, 52.7,
49.9, 40.3, 40.3, 34.9, 34.8, 32.8, 32.8; IR (thin film, cm®): 3058, 3027, 2951, 1739,
1711, 1612, 1559, 1477, 1437, 1371, 1336, 1267, 1228, 1158, 1040, 866, 794, 739, 702;
HRMS calc’d for Co1HoBrNO4 = 429.0576 found = 429.0563
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MeO,C COH Reagents employed: 1.21d (0.116 g, 0.561 mmol); 1.58d (0.103 g,
Ph 0.467 mmol); acetonitrile (3 mL); Yielded 1.65e as an orange oil,
N 68% (0.135 g, 0.316 mmol). 'H-NMR (400 MHz, CDCls)
Bln Diastereomer A: 6 = 7.50-7.43 (m, 1H), 7.35-7.23 (m, 7H), 7.21-

7.17 (m, 2H), 7.13-7.06 (m, 3H), 7.03-6.98 (m, 2H), 5.24 (s, 2H), 4.35-4.25 (m, 1H), 3.64
(s, 3H), 3.45-3.41 (m, 1H), 2.92-2.81 (m, 1H), 2.69-2.59 (m, 1H); Diastereomer B: 7.50-
7.43 (m, 1H), 7.35-7.23 (m, 7H), 7.21-7.17 (m, 2H), 7.13-7.06 (m, 3H), 7.03-6.98 (m,
2H), 5.24 (s, 2H), 4.35-4.25 (m, 1H), 3.72 (s, 3H), 3.45-3.41 (m, 1H), 2.92-2.81 (m, 1H),
2.69-2.59 (m, 1H); Diastereomeric Mixture: *C NMR (100 MHz, CDCls3) & = 175.2,
175.1, 169.6, 169.5, 143.2, 143.1, 137.5, 136.9, 128.6, 128.5, 128.5, 127.9, 127.9, 127.4,
127.3, 127.3, 126.5, 126.5, 125.5, 125.4, 121.9, 121.9, 119.6, 119.6, 119.1, 117.6, 117.5,
109.6, 52.6, 52.6, 49.9, 49.9, 40.6, 40.6, 34.8, 34.8; IR (thin film, cm?): 3060, 3028,
2952, 2928, 1739, 1712, 1613, 1603, 1495, 1481, 1467, 1453, 1438, 1418, 1393, 1355,
1332, 1300, 1265, 1233, 1201, 1176, 1028, 739, 700; HRMS calc’d for Cy7HsNO4 =
427.1784, found = 427.1778

MeO,C CO,H Reagents employed: 1.21e (0.064 g, 0.548 mmol); 1.58d (0.101 g,
Ph 0.457 mmol); acetonitrile (3 mL); Yielded 1.65f as a brown oil,
N\ 81% (0.125 g, 0.371 mmol). 'H-NMR (400 MHz, CDCls)
H Diastereomer A: & = 8.06-8.01(broad s, 1H), 7.47-7.41 (m, 1H),

7.35-7.27 (m, 4H), 7.25-7.12 (m, 2H), 7.08-6.99 (m, 2H), 4.30-4.23 (m, 1H), 3.65 (s,
3H), 3.46-3.40 (m, 1H), 2.91-2.80 (m, 1H) 2.70-2.59 (m, 1H); Diastereomer B: & = 8.06-
8.01 (broad s, 1H), 7.47-7.41 (m, 1H), 7.35-7.27 (m, 4H), 7.25-7.12 (m, 2H), 7.08-6.99
(m, 2H), 4.30-4.23 (m, 1H), 3.73 (s, 3H), 3.46-3.40 (m, 1H), 2.91-2.80 (m, 1H) 2.70-2.59
(m, 1H); Diastereomeric Mixture: **C NMR (100 MHz, CDCls) & = 174.1, 170.1, 1435,
143.2, 136.5, 128.8, 128.7, 128.5, 128.4, 127.9, 126.7, 126.5, 126.4, 126.4, 121.9, 121.6,
121.4,119.3, 119.2, 118.1, 118.0, 111.1, 52.6, 52.5, 50.1, 40.6, 40.5, 34.9 34.7; IR (thin
film, cm+): 3412, 3058, 3029, 2952, 2928, 1736, 1621, 1608, 1583, 1493, 1456, 1436,
1420, 1337, 1265, 1227, 1164, 1128, 1099, 1080, 1011, 741, 701; HRMS calc’d for
CaoH1sNO, = 337.1314, found = 337.1305
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MeO,C COH Reagents employed: 1.21f (0.072 g, 0.551 mmol); 1.58d

Ph (0.101 g, 0.460 mmol); acetonitrile (3 mL); Yielded 1.65g as

Me N a dark green oil, 87% (0.141 g, 0.401 mmol). *H-NMR (400
H MHz, CDCI3) Diastereomer A: 6 = 7.97 (br s, 1H), 7.33-7.27

(m, 4H), 7.24-7.19 (m, 3H), 7.00-6.95 (m, 2H), 4.27-4.20 (m, 1H), 3.67 (s, 1H), 3.47-
3.41 (m, 1H), 2.88-2.77 (m, 1H), 2.69-2.59 (m, 1H), 2.38 (s, 3H); Diastereomer B: & =
8.00 (br s, 1H), 7.33-7.27 (m, 4H), 7.24-7.19 (m, 3H), 7.00-6.95 (m, 2H), 4.27-4.20 (m,
1H), 3.73 (s, 1H), 3.47-3.41 (m, 1H), 2.88-2.77 (m, 1H), 2.69-2.59 (m, 1H), 2.37 (s, 3H);
Diastereomeric Mixture: **C NMR (100 MHz, CDCls) & = 174.0, 173.8, 170.1, 170.1,
143.6, 143.4, 134.8, 128.4, 128.4, 128.3, 128.3, 127.8, 126.9, 126.8, 123.6, 121.7, 121.5,
118.8, 118.8, 117.5, 117.3, 110.8, 52.5, 52.5, 50.1, 50.1, 40.5, 40.5, 35.0, 34.8, 21.5,
21.4; IR (thin film, cm+): 3408, 3028, 2952, 2922, 2860, 1735, 1653, 1603, 1583, 1494,
1436, 1640, 1265, 1227, 1165, 1099, 1031, 797, 756, 736, 701; HRMS calc’d for
Co1H21NO, = 351.1471, found = 351.1472

MeO,C COLH Reagents employed: 1.21g (0.0722 g, 0.55 mmol); 1.58d (0.1010
Ph g, 0.46 mmol); acetonitrile (3 mL); Yielded 1.65h as a dark
N e orange oil, 97% (0.1564 g, 0.44 mmol). *H-NMR (400 MHz,
H CDClj3) Diastereomer A: 6 = 7.99-7.92 (d, J = 13.7 Hz, 1H), 7.55-

7.50 (d, J = 8.2 Hz, 1H), 7.44-7.39 (d, J = 7.4 Hz, 2H), 7.33-7.27 (t, J = 7.4 Hz, 2H),
7.24-7.18 (m, 1H), 7.16-7.09 (m, 1H), 7.08-7.02 (t, J = 7.4 Hz, 1H), 4.38-4.30 (m, 1H),
3.58 (s, 3H), 3.44-3.37 (m, 1H), 3.05-2.89 (m, 2H), 2.34 (s, 3H); Diastereomer B: 6 =
7.99-7.92 (d, J = 13.7 Hz, 1H), 7.55-7.50 (d, J = 8.2 Hz, 1H), 7.44-7.39 (d, J = 7.4 Hz,
2H), 7.33-7.27 (t, ) = 7.4 Hz, 2H), 7.24-7.18 (m, 1H), 7.16-7.09 (m, 1H), 7.08-7.02 (t,J =
7.4 Hz, 1H), 4.38-4.30 (m, 1H), 3.74 (s, 3H), 3.44-3.37 (m, 1H), 3.05-2.89 (m, 2H), 2.34
(s, 3H); Diastereomeric Mixture: **C NMR (100 MHz, CDCls) & = 174.8, 170.0, 169.7,
143.8, 135.5, 135.4, 132.5, 132.4, 128.3, 127.5, 127.3, 127.2, 126.0, 120.9, 120.8, 119.3,
119.2, 119.2, 111.4, 111.4, 110.4, 110.4, 52.6, 52.5, 50.4, 50.2, 39.3, 39.2, 33.2, 11.9,
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11.9; IR (thin film, cm+): 3403, 3057, 3026, 2952, 2924, 1733, 1716, 1619, 1601, 1583,
1559, 1494, 1460, 1436, 1388, 1342, 1302, 1266, 1244, 1161, 1046, 1031, 1022, 741,
701; HRMS calc’d for Cp1H21NO4 = 351.1471, found = 351.1463

MeO,C CO,H Reagents employed: 1.21h (0.080 g, 0.546 mmol); 1.58d

Ph (0.100 g, 0.455 mmol); acetonitrile (3 mL); Yielded 1.65i as

MeO N\ a dark brown oil, 92% (0.154 g, 0.419 mmol). *H-NMR
” (400 MHz, CDCIs3) Diastereomer A: & = 7.94 (br s, 1H),

7.32-7.28 (m, 3H), 7.23-7.17 (m, 3H), 7.02-6.99 (m, 1H), 6.88 (d, J = 2.3 Hz, 1H), 6.82-
6.79 (m, 1H), 4.24-4.18 (m, 1H), 3.74 (s, 3H), 3.73 (s, 3H), 3.46-3.41 (m, 1H), 2.89-2.79
(m, 1H), 2.67-2.58 (m, 1H); Diastereomer B: & = 7.95 (br s, 1H), 7.32-7.28 (m, 3H),
7.23-7.17 (m, 3H), 7.02-6.99 (m, 1H), 6.86 (d, J = 2.3 Hz, 1H), 6.82-6.79 (m, 1H), 4.24-
4.18 (m, 1H), 3.75 (s, 3H), 3.66 (s, 3H), 3.46-3.41 (m, 1H), 2.89-2.79 (m, 1H), 2.67-2.58
(m, 1H); Diastereomeric Mixture: **C NMR (100 MHz, CDCls) & = 173.9, 173.9, 170.1,
170.0, 153.5, 143.3, 143.1, 131.7, 128.5, 128.4, 127.9, 127.9, 127.1, 127.0, 126.5, 126.4,
122.3,122.2, 117.9, 117.8, 112.0, 111.8, 101.3, 101.2, 55.7, 55.7, 52.6, 52.5, 50.1, 50.0,
40.7, 40.6, 34.8, 34.6; IR (thin film, cm®): 3411, 3059, 3028, 3000, 2952, 2833, 1735,
1624, 1604, 1583, 1485, 1454, 1439, 1341, 1288, 1266, 1213, 1172, 1094, 1063, 1031,
922, 834, 800, 752, 736, 702; HRMS calc’d for CxHxnNOs = 367.1420, found =
367.1414

C Reagents employed: 1.21e (0.054 g, 0.456 mmol); 1.58e (0.103
CO,Me
O 2 g, 0.380 mmol); acetonitrile (3 mL); Yielded 1.65j as pink oil,

o 65% (0.096 g, 0.248 mmol). ‘*H-NMR (400 MHz, CDCls)

O N Diastereomer A: 6 = 8.35-6.86 (aromatic region is a mixture of

H diastereomers as well as atropisomers), 5.23-5.18 (m, 1H), 3.65

(s, 3H), 3.61-3.56 (m, 1H), 2.99-2.78 (m, 2H); Diastereomer B: & = 8.35-6.86 (aromatic
region is a mixture of diastereomers as well as atropisomers), 5.23-5.18 (m, 1H), 3.70 (s,
3H), 3.61-3.56 (m, 1H), 2.99-2.78 (m, 2H); Diastereomeric Mixture: *C NMR (100
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MHz, CDCls) & = 170.7, 170.1, 139.4, 139.0, 136.5, 136.4, 134.0, 131.8, 131.7, 128.8,
127.2,127.2, 126.8, 126.8, 126.4, 126.3, 126.1, 126.0, 125.9, 125.4, 125.1, 124.5, 124 .4,
123.4,122.9, 122.3, 122.1, 122.0, 121.6, 119.7, 119.5, 119.4, 119.4, 119.3, 119.0, 118.9,
118.3, 117.9, 52.7, 52.5, 35.7, 35.5, 34.7, 34.6, 29.7; IR (thin film, cm+): 3412, 3054,
2951, 2925, 1734, 1700, 1684, 1653, 1636, 1617, 1598, 1576, 1558, 1540, 1507, 1490,
1457, 1436, 1419, 1396, 1265, 1227, 1167, 1097, 1011, 801, 780, 741, 702; HRMS
calc’d for C4H21NO,4 = 387.1471, found = 387.1475

MeO COMe Reagents employed: 1.21e (0.056 g, 0.482 mmol); 1.58f (0.100
O COLH g, 0.402 mmol); acetonitrile (3 mL); Yielded 1.65k as a light
brown oil, 72% (0.106 g, 0.289 mmol). *H-NMR (400 MHz,

O N CDCls) Diastereomer A: & = 7.93 (br s, 1H), 7.39-7.34 (m,

N 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.17-7.13 (m, 2H), 7.10-7.06 (m,

1H), 6.99-6.93 (m, 2H), 6.75 (d, J = 8.2 Hz, 2H), 4.18-4.12 (m, 1H), 3.69 (s, 3H), 3.66 (s,
3H), 3.39-3.34 (m, 1H), 2.81-2.74 (m, 1H), 2.57-2.50 (m, 1H); Diastereomer B: & = 7.95
(brs, 1H), 7.39-7.34 (m, 1H), 7.26 (d, J = 8.2 Hz, 1H), 7.17-7.13 (m, 2H), 7.10-7.06 (m,
1H), 6.99-6.93 (m, 2H), 6.75 (d, J = 8.2 Hz, 2H), 4.18-4.12 (m, 1H), 3.69 (s, 3H), 3.59 (s,
3H), 3.39-3.34 (m, 1H), 2.81-2.74 (m, 1H), 2.57-2.50 (m, 1H); Diastereomeric Mixture:
3¢ NMR (100 MHz, CDCl3) 6 = 174.5, 170.1, 158.1, 158.0, 136.5, 135.5, 135.2, 128.9,
126.7, 126.5, 122.0, 121.4, 121.3, 119.4, 119.4, 119.2, 118.6, 118.4, 113.8, 113.8, 111.1,
55.1, 52.6, 50.1, 50.0, 39.8, 39.8; IR (thin film, cm+): 3410, 3057, 3002, 2953, 2837,
1734, 1611, 1584, 1512, 1489, 1458, 1437, 1339, 1302, 1249, 1178, 1110, 1099, 834,
743; HRMS calc’d for Cp1H1NOs = 367.1420, found = 367.1418
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Iz

(O Reagents employed: 1.21e (0.054 g, 0.464 mmol); 1.58g (0.102
o O Coél\g; g, 0.387 mmol); acetonitrile (3 mL); Yielded 1.65I as clear oil,
86% (0.128 g, 0.334 mmol). 'H-NMR (400 MHz, CDCls)

O Diastereomer A: 6 = 8.14 (br s, 1H), 7.43 (t, J = 9.0 Hz, 1H),
7.31 (d, J = 8.2 Hz, 1H), 7.17-7.11 (m, 1H), 7.05-6.99 (m, 2H),

6.82-6.78 (m, 1H), 6.75-6.70 (m, 2H), 5.89-5.85 (m, 2H), 4.22-4.14 (m, 1H), 3.73 (s,
3H), 3.49-3.41 (m, 1H), 2.86-2.75 (m, 1H), 2.61-2.51 (m, 1H); Diastereomer B: 6 = 8.17
(brs, 1H), 7.43 (t, J = 9.0 Hz, 1H), 7.31 (d, J = 8.2 Hz, 1H), 7.17-7.11 (m, 1H), 7.05-6.99
(m, 2H), 6.82-6.78 (m, 1H), 6.75-6.70 (m, 2H), 5.89-5.85 (m, 2H), 4.22-4.14 (m, 1H),
3.68 (s, 3H), 3.49-3.41 (m, 1H), 2.86-2.75 (m, 1H), 2.61-2.51 (m, 1H); Diastereomeric
Mixture: *C NMR (100 MHz, CDCls) & = 174.4, 169.9, 147.7, 147.7, 137.4, 137.2,
136.5, 126.6, 126.5, 122.1, 121.2, 121.1, 121.0, 121.0, 119.3, 119.3, 118.4, 118.3, 111.1,
108.2, 108.0, 100.8, 52.6, 49.9, 40.3, 34.9, 34.8, 31.5, 29.6, 25.2, 22.6, 14.1; IR (thin
film, cm?): 3412, 3057, 2953, 2925, 2855, 1733, 1558, 1503, 1487, 1457, 1440, 1339,
1242, 1163, 1127, 1099, 1038, 934, 865, 813, 743, 702; HRMS calc’d for C;H19NOg =
381.1212, found = 381.1219

Cl Reagents employed: 1.21e (0.056 g, 0.474 mmol); 1.58h (0.101
O ¢O2Me g, 0.395 mmol); acetonitrile (3 mL); Yielded 1.65m as an orange
oil, 74% (0.108 g, 0.291 mmol). *H-NMR (400 MHz, CDCls)

O A\ Diastereomer A: 6 = 8.20 (br s, 1H), 7.41-7.35 (m, 1H), 7.33-7.29
H (m, 1H), 7.22 (s, 3H), 7.18-7.13 (m, 2H), 7.05-6.96 (m, 2H),
4.27-4.20 (m, 1H), 3.67 (s, 3H), 3.46-3.39 (m, 1H), 2.88-2.76 (m, 1H), 2.65-2.54 (m,
1H); Diastereomer B: 6 = 8.20 (br s, 1H), 7.41-7.35 (m, 1H), 7.33-7.29 (m, 1H), 7.22 (s,
3H), 7.18-7.13 (m, 2H), 7.05-6.96 (m, 2H), 4.27-4.20 (m, 1H), 3.71 (s, 3H), 3.46-3.39
(m, 1H), 2.88-2.76 (m, 1H), 2.65-2.54 (m, 1H); Diastereomeric Mixture: *C NMR (100
MHz, CDCls) 8 = 174.0, 169.8, 141.9, 141.8, 136.5, 132.1, 132.1, 129.2, 129.2, 128.6,
128.6, 126.4, 126.3, 122.2, 121.5, 121.4, 119.4, 119.2, 119.1, 117.6, 117.5, 111.2, 52.7,
52.6, 49.9, 40.0, 34.7, 34.5; IR (thin film, cm+): 3409, 3057, 2952, 2901, 2795, 1734,
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1653, 1599, 1577, 1558, 1491, 1457, 1436, 1418, 1339, 1265, 1227, 1163, 1092, 1014,
1032, 831, 765, 742, 702; HRMS calc’d for CooH1sCINO4 = 371.0924, found = 371.0922

Br Reagents employed: 1.21e (0.048 g, 0.409 mmol); 1.58i (0.102 g,
O Coé'\geH 0.341 mmol); acetonitrile (3 mL); Yielded 1.65n as an orange oil,
*" 73% (0.103 g, 0.249 mmol). H-NMR (400 MHz, CDCly)
O A\ Diastereomer A: & = 8.13 (br s, 1H), 7.42-7.36 (m, 3H), 7.34-
H 7.28 (m, 2H), 7.19-7.15 (m, 2H), 7.05-6.97 (m, 2H), 4.26-4.20
(m, 1H), 3.68 (s, 3H), 3.45-3.40 (m, 1H), 2.88-2.77 (m, 1H), 2.66-2.55 (m, 1H);
Diastereomer B: 6 = 8.12 (br s, 1H), 7.42-7.36 (m, 3H), 7.34-7.28 (m, 2H), 7.19-7.15 (m,
2H), 7.05-6.97 (m, 2H), 4.26-4.20 (m, 1H), 3.73 (s, 3H), 3.45-3.40 (m, 1H), 2.88-2.77
(m, 1H), 2.66-2.55 (m, 1H); Diastereomeric Mixture: *C NMR (100 MHz, CDCl;) & =
174.1, 174.0, 169.8, 169.7, 142.4, 142.3, 136.5, 131.6, 131.6, 129.7, 129.7, 126.4, 126.4,
122.3, 121.5, 121.4, 120.3, 120.3, 119.5, 119.3, 119.2, 117.6, 117.5, 111.2, 52.7, 52.7,
49.8, 40.1, 34.6, 34.5; IR (thin film, cm+): 3412, 3054, 2952, 2925, 1734, 1598, 1558,
1510, 1489, 1456, 1435, 1418, 1353, 1337, 1265, 1245, 1168, 1095, 1011, 896, 801, 780,
767,742, 702

CO,Me  Reagents employed: 1.21e (0.064 g, 0.542 mmol); 1.58j (0.102 g,
| CO,H

S 0.452 mmol); acetonitrile (3 mL); Yielded 1.650 as brown oil,
{ 50% (0.077 g, 0.224 mmol). 'H-NMR (600 MHz, CDCls)
N Diastereomer A: 6 = 8.08 (br s, 1H), 7.95 (br s, 1H), 7.53 (t, J =
H

8.2 Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.32-7.28 (m, 1H), 7.14-
6.89 (m, 5H), 4.61-4.54 (m, 1H), 3.67 (s, 3H), 3.51-3.45 (m, 1H), 2.93-2.83 (m, 1H),
2.79-2.68 (m, 1H); Diastereomer B: & = 8.12 (br s, 1H), 7.95 (br s, 1H), 7.53 (t, J = 8.2
Hz, 1H), 7.42 (d, J = 8.2 Hz, 1H), 7.32-7.28 (m, 1H), 7.14-6.89 (m, 5H), 4.61-4.54 (m,
1H), 3.68 (s, 3H), 3.51-3.45 (m, 1H), 2.93-2.83 (m, 1H), 2.79-2.68 (m, 1H);
Diastereomeric Mixture: *C NMR (100 MHz, CDCls) & = 174.0, 169.9, 169.8, 148.0,
147.8, 136.5, 136.4, 126.5, 126.2, 126.1, 124.4, 124.4, 123.8, 122.1, 121.9, 121.7, 119.5,
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119.4, 119.2, 119.0, 117.7, 111.3, 111.1, 52.6, 52.6, 50.0, 50.0, 36.1, 36.0, 35.8, 35.6; IR
(thin film, cm®): 3410, 3108, 3057, 2952, 2926, 2854, 1733, 1619, 1558, 1507, 1489,
1457, 1436, 1339, 1265, 1228, 1165, 1099, 1032, 1012, 850, 742, 702; HRMS calc’d for
C1gH17NO,4S = 343.0878, found = 343.0870

Procedure For the Conversion of 1.65a to Tetrahydrocarbazole 1.66

Crude mixture of indole hemi-malonate 1.65a and indole 1.61 were dissolved in
toluene. Trifluoroacetic anhydride (TFAA) was added to the solution, the mixture was
stirred for 30 mins and cold water was added. The aqueous layer was extracted three
times with DCM, then the combined organic layers were dried over MgSOy, filtered and
solvent was removed in vacuo.®® The residue was then added to a suspension of NaH in
wet DMF.3' After stirring for 15 mins at 70 °C, the mixture was poured over ice and
extracted with ether three times. The combined organic layers were dried over MgSOy,
filtered and solvent was removed in vacuo. The residue was then purified by flash

chromatography on silica gel.

Ph Reagents employed: 1.65a (0.055 g, 0.157 mmol); TFAA (24
N COMe L, 1.73 mmol); Toluene (5 ml); NaH (0.023 g, 0.575 mmol);
N o DMF (3 mL); Yielded 1.66 as brown oil, 40% (0.061 g, 0.183
Me

mmol). *H-NMR (400 MHz, CDCl3) Diastereomer A: & = 7.26-
7.43(m, 6H), 7.18 (d, J = 8.2 Hz, 1H), 6.84-6.89 (m, 1H), 6.68 (d, J = 8.2 Hz, 1H), 4.44
(dd, J = 11.0 Hz, 4.7 Hz, 1H), 4.12 (s, 3H), 3.84 (dd, J = 12.9 Hz, 4.3 Hz, 1H), 3.79 (s,
3H), 2.79-7.69 (m, 1H), 2.64-2.57 (m, 1H); Diastereomer B: 6 = 7.26-7.43(m, 6H), 7.09
(d, J =8.2 Hz, 1H), 6.96-7.01 (m, 1H), 6.68 (d, J = 8.2 Hz, 1H), 4.68-4.73 (m, 1H), 4.14
(s, 3H), 3.78 (s, 3H), 3.73 (dd, J = 9.0 Hz, 4.7 Hz, 1H), 2.95-3.03 (m, 1H), 2.45-2.52 (m,
1H); Diastereomeric Mixture: **C NMR (100 MHz, CDCls) & = 186.9, 186.6, 170.7,
170.6, 143.1, 142.2, 140.4, 140.3, 130.6, 129.9, 129.7, 129.6, 128.7, 128.6, 128.3, 128.0,
127.1, 127.0, 126.9, 126.8, 124.3, 124.1 122.8, 122.3, 110.3, 110.2, 52.4,52.4, 41.1, 37.7,
37.2, 31.6, 31.5; HRMS calc’d for Cp1H19NO3 = 333.1365, found = 333.1372
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Procedure for the Conversion of 1.65a to Azepinoindole 1.67%

Crude mixture of indole hemi-malonate 1.65a and indole 1.61 were dissolved in
benzene. Diphenylphosphoryl azide (DPPA) and triethylamine were added and the
reaction was stirred for 10 mins. The reaction was then heated to reflux for 15 hrs. The
solvent was removed in vacuo, the remaining residue was dissolved in EtOAc and
washed with a solution of 5% HCI. The organic layer was dried over MgSQy, filtered and

purified by flash chromatography on silica gel.

Ph co,Me Reagents employed: 1.65a (0.160 g, 0.454 mmol); DPPA (97
\ NH pL, 0.454 mmol); triethylamine (69 pL, 0.498 mmol); Benzene
N 5 (5 mL); Yielded 1.67 as a yellow oil, 33% (0.052 g, 0.149
Me

mmol). *H-NMR (400 MHz, CDCl;) Diastereomeric mixture: &
= 7.45-7.40 (m, 1H), 7.34-7.27 (m, 4H), 7.24-7.16 (m, 2H), 7.06-7.01 (m, 1H), 6.90 (d, J
= 5.5 Hz, 1H), 5.57-5.47 (overlapping br d, 1H), 4.53-4.41 (m, 1H), 4.33-4.26 (m, 1H),
3.75, 3.75 (overlapping s, 3H), 3.63, 3.62 (overlapping s, 3H), 2.85-2.40 (overlapping m,
2H); Diastereomeric Mixture: *C NMR (100 MHz, CDCls) & = 172.1, 172.0, 156.1,
156.1, 143.6, 143.2, 137.4, 137.3, 128.6, 128.5, 127.9, 127.8, 126.6, 126.5, 126.2, 126.1,
121.8, 119.2, 118.9, 109.3, 109.2, 52.8, 52.4, 39.3, 39.2, 38.2, 38.1, 32.7, 32.7; HRMS
calc’d for Co1H2oN,03 = 348.1474, found = 348.1476

Section 1.9.2 The Tandem Ring Opening/Decarboxylation of Cyclopropane
Hemimalonates with Sodium Azide
General Experimental Procedure for the synthesis of azidoesters 1.71a-I

Sodium azide (1.2 equiv.) and ammonium chloride (1.4 equiv.) were added to a
solution of cyclopropane hemimalonate (1.0 equiv.) in 2-methoxyethanol:water (5.0
ml:0.5 ml). The mixture was stirred at reflux (125 °C) until the reaction was complete

(as determined by TLC analysis). The reaction was then quenched with water and
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extracted with ether (3 times). The organic layers were then combined and dried with
magnesium sulfate. Following filtration, the solvent was removed under reduced
pressure and the crude mixture purified by flash chromatography (EtOAc:Hexanes,
20:80) to yield the desired products 1.71a-l.

N3 Reagents employed: 1.58d (0.104 g, 0.473 mmol); sodium azide
O/\/\COZMe (0.037 g, 0.569 mmol); ammonium chloride (0.036 g, 0.673
mmol); 2-methoxyethanol:water; Yielded 1.71 a as a clear olil,

78% (0.081 g, 0.369 mmol). The data for this compound matched that previously

reported.®

azide (0.035 g, 0.538 mmol); ammonium chloride (0.033 g,

0.617 mmol); 2-methoxyethanol:water; Yield 1.71b as a clear

O Nj Reagents employed: 1.58e (0.119 g, 0.440 mmol); sodium
O CO,Me

oil, 76% (0.090 g, 0.334 mmol) as a clear oil. Ry = 0.58, 30% EtOAc in hexanes; *H-
NMR (400 MHz, CDCl5): 8 = 8.16 (d, J = 8.6, 1H), 7.90 (dd, J = 7.8, 1.6 Hz, 1H), 7.84
(d, J = 7.8 Hz, 1H), 7.60-7.48 (m, 4H), 5.37 (dd, J = 8.6, 5.8 Hz, 1H), 3.69 (s, 3H), 2.60-
2.43 (m, 2H), 2.36-2.16 (m, 2H); *C NMR (100 MHz, CDCl;) § = 173.3, 134.7, 134.0,
130.6, 129.1, 128.95, 126.6, 125.9, 125.3, 124.3, 122.9, 62.0, 51.7, 30.71, 30.6; IR (thin
film): 3050, 2953, 2926, 2852, 2101, 1736, 1437, 1364, 1325, 1252, 1201, 1173, 801,
779; HRMS (EI) calc’d for C15H15N30, = 269.1164, found = 269.11509.

Nj Reagents employed: 1.58g (0.097 g, 0.367 mmol); sodium

co,Me azide (0.029 g, 0.446 mmol); ammonium chloride (0.027 g,

o 0.505 mmol); 2-methoxyethanol:water; Yielded 1.71c as a
-0

clear oil, 87% (0.084 g, 0.319 mmol). Rf = 0.58, 30% EtOAc
in hexanes; *H-NMR (400 MHz, CDCl5): & = 6.80 (d, J = 1.6 Hz, 1H), 6.78 (s, 1H) 6.76
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(d, J = 1.6 Hz, 1H) 5.97 (s, 2H), 4.44 (dd, J = 7.8, 6.2 Hz, 1H), 3.66 (s, 3H), 3.76 (t, J =
7.4, 2H), 2.11-1.94 (m, 2H); *C NMR (100 MHz, CDCls) & = 173.1, 148.2, 147.7,
132.7,120.7, 108.3, 106.9, 101.2, 65.1, 51.7, 31.3, 30.5; IR (thin film): 3459, 3323, 2953,
2101, 1739, 1505, 1490, 1443, 1342, 1328, 1252, 1170, 1102, 1042, 933, 863, 813, 661;
HRMS (El) calc’d for C12H13N304 = 263.0906, found = 263.0905.

N Reagents employed: 1.58f (0.100 g, 0.400 mmol); sodium
/@N\COZMe azide (0.031 g, 0.477 mmol); ammonium chloride (0.030 g,
MeO 0.561 mmol); 2-methoxyethanol:water; Yielded 1.71d as a
clear oil, 95% (0.095 g, 0.381 mmol). R¢ = 0.54, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCly): & = 7.25-7.21 and 6.92-6.89 (m, AA’BB’, 4H), 4.47 (dd, ] = 7.8, 6.3 Hz,
1H), 3.80 (s, 3H), 3.66 (s, 3H), 2.36 (t, J = 7.4, 2H), 2.15-1.98 (m, 2H); **C NMR (100
MHz, CDClz) 6 =173.1, 159.6, 130.8, 128.1, 114.2, 64.8, 55.2, 51.6, 31.2, 30.5; IR (thin

film): 3451, 3319, 2953, 2839, 2482, 2101, 1739, 1611, 1529, 1438, 1245, 1174, 1034,
832, 545; HRMS (El) calc’d for C12H15sNO3 = 221.1052, found = 221.1050. (M-Ny)

N3 Reagents employed: 1.58i (0.095 g, 0.318 mmol); sodium
/O/\/\cozm azide (0.025 g, 0.385 mmol), ammonium chloride (0.024 g,
Br 0.449 mmol); 2-methoxyethanol:water; Yielded 1.71e as a
clear oil, 629% (0.059 g, 0.198 mmol). R; = 0.53, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCls): & = 7.53-7.50 and 7.20-7.17 (m, AA’BB’, 4H), 4.52 (dd, J = 8.2, 6.3 Hz,
1H), 3.66 (s, 3H), 2.37 (ddd, J = 9.8, 7.8, 3.1 Hz, 2H), 2.12-1.97 (m, 2H); *C NMR (100
MHz, CDCl3) & = 173.0, 183.0, 132.0, 128.5, 122.4, 64.6, 51.7, 31.3, 30.3; IR (thin film):

3455, 3319, 2951, 2101, 1737, 1489, 1437, 1250, 1201, 1171, 1044, 1011, 822, 532;
HRMS (EI) calc’d for C11H13BrN3;O, = 298.0191, found = 298.0185. (M+H)
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Nj Reagents employed: 1.58h (0.105 g, 0.412 mmol); sodium
/@Aﬁcone azide (0.032 g, 0.538 mmol); ammonium chloride (0.030 g,
cl 0.561 mmol); 2-methoxyethanol:water; Yielded 1.71f as a
clear oil, 60% (0.063 g, 0.248 mmol). R; = 0.56, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCls): & = 7.38-7.35 and 7.26-7.23 (m, AA’BB’, 4H), 4.53 (dd, J = 7.8, 6.3 Hz,
1H), 3.67 (s, 3H), 2.38 (ddd, J = 9.4, 7.4, 2.3 Hz, 2H), 2.13-1.98 (m, 2H); *C NMR (100
MHz, CDCl3) 6 = 173.0, 137.5, 134.2, 129.1, 128.2, 64.5, 51.7, 31.3, 30.3; IR (thin film):

2952, 2101, 1739, 1493, 1437, 1325, 1249, 1202, 1171, 1092, 1015, 826, 534; HRMS
(E) cale’d for C11H13CIN3O, = 254.0696, found = 254.0710. (M+H)

N3 Reagents employed: 1.58k (0.116 g, 0.473 mmol); sodium
/@AACOZMe azide (0.037 g, 0.569 mmol), ammonium chloride (0.035 g,
NC 0.654 mmol); 2-methoxyethanol:water; Yielded 1.71g as a
clear oil, 56% (0.065 g, 0.266 mmol). R; = 0.46, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCl5): § = 7.69-7.66 and 7.44-7.41 (m, AA’BB’, 4H), 4.63 (dd, J = 7.0, 7.0 Hz,
1H), 3.66 (s, 3H), 2.46-2.32 (m, 2H), 2.07-2.02 (m, 2H); **C NMR (100 MHz, CDCls) &
= 172.7, 144.4, 132.7, 127.5, 118.2, 112.3, 64.4, 51.7, 31.3, 30.0; IR (thin film): 2953,

2230, 2100, 1734, 1609, 1438, 1417, 1308, 1252, 1200, 1174, 1019, 835, 566; HRMS
(ED) cale’d for C12H13N4O; = 245.1039, found = 245.1045. (M+H)

N3 Reagents employed: 1.581 (0.116 g, 0.437 mmol); sodium
/©/\/\C02Me azide (0.034 g, 0.523mmol); ammonium chloride (0.033 g,
02N 0.617 mmol); 2-methoxyethanol:water; Yielded 1.71h as a
clear oil, 46% (0.053 g, 0.201 mmol). R; = 0.44, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCly): & = 8.26-8.23 and 7.52-7.49 (m, AA’BB’, 4H), 4.71 (dd, J = 7.0, 7.0 Hz,
1H), 3.68 (s, 3H), 2.49-2.34 (m, 2H), 2.08 (g, J = 7.0 Hz, 2H); *C NMR (100 MHz,
CDCl3) 6 =172.7, 147.8, 146.4, 127.7, 124.1, 64.3, 51.8, 31.5, 30.0; IR (thin film): 2953,

2926, 2100, 1735, 1607, 1522, 1437, 1348, 1253, 1200, 1172, 853, 700; HRMS (EI)
calc’d for C11H13N4O4 = 265.0937, found = 265.0935. (M+H)

www.manaraa.com



54

N Reagents employed: 1.58m (0.101 g, 0.410 mmol); sodium
©/W002Me azide (0.032 g, 0.492 mmol); ammonium chloride (0.030 g,
0.561 mmol); 2-methoxyethanol:water; Yielded 1.71i as a

clear oil, 78% (0.078 g, 0.318 mmol). R; = 0.50, 30% EtOAc in hexanes; ‘H-NMR (400
MHz, CDCl): 6 = 7.37 (d, J = 7.4 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.26-7.22 (m, 1H),
6.60 (d, J = 15.6 Hz, 1H), 6.06 (dd, J = 16.0, 8.2 Hz, 1H) 4.08 (dd, J = 14.9, 7.4 Hz, 1H),
3.64 (s, 3H), 2.41 (t, J = 7.4 Hz, 2H), 1.94-1.88 (m, 2H); *C NMR (100 MHz, CDCls) &
= 173.2, 135.7, 133.9, 128.6, 128.2, 126.7, 126.1, 63.9, 51.7, 30.2, 29.8; IR (thin film):

3027, 2952, 2105, 1739, 1493, 1437, 1239, 1170, 1112, 1071, 969, 888, 751, 694; HRMS
(EI) calc’d for C13H1aNO; = 216.1030, found = 216.1030. (M-Na, H)

N3 Reagents employed: 1.58m (0.098 g, 0.237 mmol); sodium
Q]/\/\COZMe azide (0.018 g, 0.277 mmol); ammonium chloride (0.018 g,
TsN 0.337 mmol); 2-methoxyethanol:water; Yielded 1.71j as a
clear oil, 58% (0.057 g, 0.138 mmol). R; = 0.54, 30% EtOAc in hexanes; *H-NMR (400
MHz, CDCls): § = 7.99 (d, J = 8.2 Hz, 1H), 7.75 (d, J = 8.6 Hz, 2H), 7.61 (d, J = 1 Hz,
1H), 7.58 (s, 1H), 7.35 (ddd, J = 8.6, 7.4, 1.2 Hz, 1H), 7.26 (ddd, J = 8.2, 8.2, 0.8 Hz,
1H), 7.23-7.21 (m, 2H), 4.76 (dd, J = 7.0, 7.0 Hz, 1H), 3.68 (s, 3H), 2.51-2.38 (m, 2H),
2.33 (s, 3H), 2.27-2.17 (m, 2H); *C NMR (100 MHz, CDCls) § = 173.0, 145.2, 135.5,
134.8, 129.9, 128.4, 126.8, 125.3, 124.0, 123.5, 120.2, 120.0, 113.9, 57.8, 51.7, 30.4,
29.4, 21.5; IR (thin film): 2953, 2925, 2109, 1735, 1448, 1372, 1256, 1178, 1123, 1089,
749, 669, 574, 538; HRMS (EI) calc’d for CaoH20N40,4S = 412.1205, found = 412.1190.

N3 Reagents employed: 1.58j (0.135 g, 0.597 mmol); sodium azide

WCOZMe (0.047 g, 0.723 mmol); ammonium chloride (0.045 g, 0.841
S

mmol); 2-methoxyethanol:water; Yielded 1.71k as a clear oil,
79% (0.106 g, 0.471 mmol). Ry = 0.47, 30% EtOAc in hexanes; *H-NMR (400 MHz,
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CDCl3): 6=7.30 (dd, J = 5.0, 1.2 Hz, 1H), 7.04-7.03 (m, 1H), 7.01-6.98 (m, 1H), 4.9 (dd,
J=7.0,7.0 Hz, 1H), 3.67 (s, 3H), 2.44 (dd, J = 7.4, 1.2 Hz, 2H), 2.23-2.10 (m, 2H); **C
NMR (100 MHz, CDCl3) & = 172.8, 141.7, 126.8, 125.8, 125.6, 60.3, 51.6, 31.6, 30.4; IR
(thin film): 2952, 2099, 1736, 1437, 1367, 1328, 1240, 1173, 854, 835, 707; HRMS (EI)
calc’d for CgH131NO,S = 197.0510, found = 197.0511. (M-N)

N3 Reagents employed: 1.58n (0.126 g, 0.599 mmol); sodium azide
WCOZMe (0.047 g, 0.723 mmol); ammonium chloride (0.045 g, 0.841
mmol); 2-methoxyethanol:water; Yielded 1.71l as a clear olil,
63% (0.079 g, 0.378 mmol). Ry = 0.54, 30% EtOAc in hexanes; *H-NMR (400 MHz,
CDCly): 8 = 7.42 (d, J = 1 Hz, 1H), 6.36 (dd, J = 3.1, 1.8 Hz, 1H), 6.33 (d, J = 3.1 Hz,
1H), 4.53 (dd, 7.2, 7.2 Hz, 1H), 3.68 (s, 3H), 2.43 (ddd, J = 7.6, 7.6, 0.8 Hz, 2H), 2.25-
3.12 (m, 2H); B3¢ NMR (100 MHz, CDCl3) 6 = 172.9, 151.5, 143.0, 110.2, 108.1, 57.9,
51.7, 30.2, 27.8; IR (thin film): 2954, 2102, 1736, 1438, 1338, 1239, 1210, 1173, 1013,
745; HRMS (EI) cale’d for CoH1:NO3 = 181.0739, found = 181.0739. (M-N,)

Procedure for the azide reduction to GABA esters

To a solution of azide (1 equiv) in MeOH was added 10% palladium on activated carbon.
The solution was stirred under a balloon of hydrogen for two hours. The mixture was
then passed through celite and the solvent was removed under reduced pressure to give
GABA ester 1.73.

NH, Reagents employed: 1.71a (0.066 g, 0.301 mmol); 10%
©/K/\C02Me palladium on activated carbon (0.003 g); Yielded 1.73 as a
yellow oil, 93% (0.054 g, 0.279 mmol). The data for this

compound matched that previously reported.®*
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Lactamization Procedure

To a solution of optically enriched methyl 4-amino-4-phenylbutanoate 1.71a (0.259
mmol) in MeOH, was added 1.7 M NaOH (0.389 mmol) dropwise. The solution was
stirred for 2 hours, and then diluted with EtOAc and water to separate layers. The
aqueous layer was then acidified with 5% HCI to reach pH 2, and then extracted three
times with EtOAc. The combined organic layers were washed with brine, dried of

MgSO,, filtered and concentrated.

O Reagents employed: 1.73 (0.050 g, 0.259 mmol); 1.7 M NaOH (0.5 mL,
HN 0.389 mmol); Yielded 1.74 as a yellow oil, 96% (0.040 g, 0.248 mmol). The

Ph data for this compound matched the previously reported.®?

Mosher’s Amide Procedure

To a solution of methyl 4-amino-4-phenylbutanoate 1.73 (0.068 mmol) in THF (1 mL),
was added Mosher’s Acid (0.071 mmol), DCC (0.081 mmol) and DMAP (0.0041 mmol).
The solution was stirred at room temperature overnight. The solution was filtered and the
solvent was removed under reduced pressure, to which the mixture was purified by flash
chromatography (EtOAc:Hexanes, 20:80) to yield Mosher’s Amide.

Ph CF, Reagents employed: 1.73 (0.013 g, 0.068 mmol); Mosher’s Acid
Meoi (0.017 g, 0.071 mmol); DCC (0.017 g, 0.081 mmol); DMAP
HN™ ~O

(0.001 g, 0.0041 mmol); Yield 61% (0.017 g, 0.042 mmol). *H-
©/K/\C°2Me NMR (400 MHz, CDCly): & = 7.56-7.54 (m, 2H), 7.42-7.41 (m,
3H), 7.37-7.34 (m, 2H), 7.31-7.29 (m, 3H), 7.19 (d, J = 8.2 Hz,
1H), 5.01 (br dd J = 15.2, 7.8 Hz, 1H), 3.67 (s, 0.19H), 3.59 (s, 3H), 3.40 (s, 0.22H), 3.37
(s, 3H), 2.30-2.26 (m, 3H), 2.17-2.11 (m, 2H). **F-NMR (376 MHz, CDCls): & = -68.8 (s,

3F), -68.9 (s, 0.16F). The enantiomeric excess was determined to be 90% by Mosher’s
amide (*H, F-NMR).

www.manaraa.com



S7

Section 1.9.3 The Synthesis of Butanolides from Cyclopropane Hemimalonates

General Experimental Procedure: Cyclopropane hemimalonates 1.58, LiCl, and
MesN'HCI were added to a microwave vial and dissolved in DMF. The vial was sealed
and heated for 40 minutes at 150 °C. After the required reaction time the reaction was
quenched with H,O and extracted with ether. The organic layer was dried and the solvent
was removed. The residue was subjected to flash chromatography on silica gel and the

product 1.78 was isolated.

0 Reagents employed: 1.58d (0.075 g, 0.341 mmol); LiCl (0.029 g, 0.684

Eﬁo mmol); MesN'HCI (0.046 g, 0.481 mmol); DMF (4 mL); Yielded 1.78a as a

z clear oil, 82% (0.045 g, 0.279 mmol). Spectral properties are identical to those

@ previously reported.®® 80% ee calculated from Mosher’s ester. **F-NMR (376
MHz, CDCl3): 6 =-71.31 (s, 90), -71.59 (s, 10).

0 Reagents employed: 1.58f (0.077 g, 0.308 mmol); LiCl (0.026 g, 0.613

o) mmol); MesN'HCI (0.041 g, 0.429 mmol); DMF (4 mL); Yielded 1.78b as a

yellow oil, 91% (0.054 g, 0.281 mmol). Rs = 0.25, 30% EtOAc/hexanes. *H-

NMR (400 MHz, CDCls): § = 7.26 (d, J = 9.0 Hz, 2H), 6.90 (d, J = 8.6 Hz,

‘e 2H). 545 (dd, ) = 86, 6.2 Hz, 1H), 3.80 (s, 3H), 2.68-2.56 (m, 3H), 2.26-

2.14 (m, 1H). *C-NMR (100 MHz, CDCls): & = 176.9, 159.7, 131.1, 126.9, 114.0, 81.3,

55.3, 30.8, 29.2. IR (thin film, cm™): 3129, 1771, 1517, 1400, 1250, 1175, 1141, 1112,
1032. HRMS calc’d for C11H1,05 = 192.0786, found = 192.0783.
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0 Reagents employed: 1.58g (0.078 g, 0.295 mmol); LiCl (0.025 g, 0.590

o mmol); MezN'HCI (0.040 g, 0.419 mmol); DMF (4 mL); Yielded 1.78c as a

brown oil, 90% (0.055 g, 0.267 mmol). R; = 0.22, 30% EtOAc/hexanes.

'H-NMR (400 MHz, CDCls): & = 6.81-6.78 (m, 3H), 5.96 (s, 2H), 5.40 (dd,

OJO J =8.6, 6.2 Hz, 1H), 2.66-2.54 (m, 3H), 2.22-2.09 (m, 1H). *C-NMR (100

MHz, CDCl3): 6 = 176.7, 148.0, 147.7, 133.0, 119.1, 108.2, 105.9, 101.2, 81.2, 30.9,

29.0. IR (thin film, Cm'l): 3135, 2992, 1771, 1505, 1446, 1400, 1245, 1141, 1037. HRMS
calc’d for C11H1004 = 206.0579, found = 206.0575.

0 Reagents employed: 1.58h (0.075 g, 0.294 mmol); LiCl (0.025 g, 0.590

o mmol); MezN'HCI (0.039 g, 0.408 mmol); DMF (4 mL); Yielded 1.78d as a

yellow oil, 81% (0.047 g, 0.239 mmol). Rs = 0.16, 30% EtOAc/hexanes. *H-

NMR (400 MHz, CDCls3): 6 = 7.36 (d, J = 8.6 Hz, 2H), 7.27 (d, J = 8.2 Hz,

\, 2H),5.48 (dd, J = 8.6, 6.2 Hz, 1H), 2.70-2.61 (m, 3H), 2.20-2.07 (m, 1H). Bc-

NMR (100 MHz, CDCl3): 6 = 176.5, 137.8, 134.2, 128.9, 126.6, 80.4, 30.9, 28.8. IR (thin

film, cm™): 3135, 2924, 1773, 1402, 1173, 1138, 1091, 1035. HRMS calc’d for
C10HoClO, = 196.0291, found = 196.0299.

0O Reagents employed: 1.58i (0.076 g, 0.254 mmol); LiCl (0.022 g, 0.519 mmol);

o) MesN'HCI (0.035 g, 0.366 mmol); DMF (4 mL); Yielded 1.78e as a yellow oil,

74% (0.045 g, 0.187 mmol). Rs = 0.29, 30% EtOAc/hexanes. *H-NMR (400

MHz, CDCls): 6 = 7.51 (d, J = 8.6 Hz, 2H), 7.20 (d, J = 8.6 Hz, 2H), 5.46 (dd,

\ =82 62 Hz, 1H), 271-261 (m, 3H), 221-2.07 (m, 1H). BC-NMR (100

MHz, CDCl3): 6 = 176.5, 138.4, 131.9, 126.9, 122.3, 80.4, 30.9, 28.8. IR (thin film, cm’

l): 3136, 2923, 1781, 1402, 1173, 1140, 1035, 1010. HRMS calc’d for C1oHgBrO, =
239.9786, found = 239.9794.
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0 Reagents employed: 1.58k (0.075 g, 0.306 mmol); LiCl (0.026 g, 0.613

o) mmol); MesN'HCI (0.041 g, 0.429 mmol); DMF (4 mL); Yielded 1.78f as a
clear oil, 52% (0.030 g, 0.160 mmol). R; = 0.11, 30% EtOAc/hexanes. H-

NMR (600 MHz, CDCl3): 6 = 7.69 (d, J = 8.8 Hz, 2H), 7.45 (d, J = 8.2 Hz,

N 2H), 5.55-5.51 (m, 1H), 2.76-2.60 (m, 3H), 2.16-2.07 (m, 1H). *C-NMR (150

MHz, CDCl3): 6 = 176.0, 144.7, 132.6, 125.8, 118.3, 112.3, 79.8, 30.8, 28.6. IR (thin
film, cm'l): 2954, 2924, 1772, 1653, 1457, 1174, 1019, 525. HRMS calc’d for C11HgNO,

=187.0633, found = 187.0639.

0 Reagents employed: 1.580 (0.075 g, 0.270 mmol); LiCl (0.023 g, 0.543

o mmol); MezN'HCI (0.036 g, 0.377 mmol); DMF (4 mL); Yielded 1.78g as

a clear oil, 39% (0.023 g, 0.104 mmol). Rf = 0.16, 30% EtOAc/hexanes.

'H-NMR (400 MHz, CDCl3): & = 8.06 (d, ] = 8.6 Hz, 2H), 7.40 (d, ] = 8.2

Hz, 2H), 5.59-5.53 (m, 1H), 3.92 (s, 3H), 2.76-2.63 (m, 3H), 2.21-2.12

(m, 1H). C-NMR (100 MHz, CDCls): § = 176.5, 166.5, 144.4, 130.2,

130.1, 125.0, 80.4, 52.2, 30.9, 28.7. IR (thin film, cm™): 2998, 1785, 1721, 1613, 1436,

1283, 1178, 1142, 1113, 1019, 940, 768, 706. HRMS calc’d for C12H1,04 = 220.0736,
found = 220.0720.

COZMe

0 Reagents employed: 1.58m (0.082 g, 0.198 mmol); LiCl (0.017 g, 0.401
o mmol); MesN'HCI (0.027 g, 0.283 mmol); DMF (4 mL); Yielded 1.78h as
a yellow oil, 85% (0.060 g, 0.169 mmol). R¢ = 0.24, 30% EtOAc/hexanes.

4 'H-NMR (400 MHz, CDCl3): 5 =7.99 (d, ] = 8.2 Hz, 1H), 7.77 (d, J = 8.6
Ts Hz, 2H), 7.59 (s, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.35 (dt, J = 8.6, 1.2 Hz,

1H), 7.28-7.20 (m, 3H), 5.75-5.69 (M, 1H), 2.72-2.64 (m, 3H), 2.47-2.35 (m, 1H), 2.33
(s, 3H). ®*C-NMR (100 MHz, CDCly): & = 176.4, 145.3, 135.3, 134.9, 130.0, 128.0,
126.8, 125.3, 123.4, 123.0, 120.5, 119.8, 113.7, 75.4, 28.5, 28.2, 21.5. IR (thin film, cm’
1): 3115, 1775, 1447, 1400, 1371, 1174, 1124, 1100, 1036. HRMS calc’d for C1oH17NO,S
= 355.0878, found = 355.0879.

www.manaraa.com



60

¢} Reagents employed: 1.58j (0.068 g, 0.301 mmol); LiCl (0.025 g, 0.590 mmol);

o  MesN'HCI (0.040 g, 0.418 mmol); DMF (4 mL); Yielded 1.78i as an orange

oil, 74% (0.037 g, 0.220 mmol). R = 0.24, 30% EtOAc/hexanes. *H-NMR

//S (400 MHz, CDCl3): 6 =17.34 (dd, J = 5.1, 1.6 Hz, 1H), 7.09 (d, J = 3.5 Hz, 1H),
7.00 (dd, J = 4.7, 3.5 Hz, 1H), 5.76-5.69 (m, 1H), 2.74-2.60 (m, 3H), 2.45-2.31 (m, 1H).
BCc-NMR (100 MHz, CDCl3): 6 = 176.1, 141.7, 126.9, 126.2, 125.9, 77.3, 30.7, 28.9. IR
(thin film, Cm'l): 3108, 2923, 2851, 1777, 1401, 1172, 1135, 1015, 921. HRMS calc’d for

CsHgO,S = 168.0245, found = 168.0243.

O Reagents employed: 1.58m (0.098 g, 0.398 mmol); LiCl (0.034 g, 0.802
o mmol); MesN'HCI (0.053 g, 0.555 mmol); DMF (4 mL); Yielded 1.78j as a
clear oil, 80% (0.060 g, 0.319 mmol). R; = 0.28, 30% EtOAc/hexanes. H-
NMR (600 MHz, CDCl3): 6 =7.39 (d, J = 7.6 Hz, 2H), 7.34 (t, J = 7.6 Hz,
2H), 7.29 (d, J = 7.0 Hz, 1H), 6.68 (d, J = 15.8 Hz, 1H), 6.20 (dd, J = 15.8,
7.0 Hz, 1H), 5.13-5.09 (m, 1H), 2.62-2.57 (m, 2H), 2.51-2.44 (m, 1H), 2.13-2.06 (m, 1H).
B3C-NMR (100 MHz, CDCls): & = 176.8, 135.6, 132.8, 128.6, 128.3, 126.7, 126.4, 80.6,
28.8, 28.5. IR (thin film, cm™): 2924, 1768, 1073, 1032, 974, 758. HRMS calc’d for
C12H1,0, = 188.0837, found = 188.0837.

O  Reagents employed: 1.58b (0.086 g, 0.505 mmol); LiCl (0.043 g, 1.01 mmol);

o MesN'HCI (0.068 g, 0.712 mmol); DMF (4 mL); Yielded 1.78k as a clear oil,

__ 60% (0.034 g, 0.303 mmol). Ry = 0.33, 30% EtOAc/hexanes. 'H-NMR (400
MHz, CDCls): & = 5.87 (ddd, J = 16.8, 10.5 Hz, 5.9 Hz, 1H), 5.36 (dt, J = 17.2, 1.2 Hz,
1H), 5.25 (dt, J = 10.5, 1.2 Hz, 1H), 4.96-4.90 (m, 1H), 2.56-2.50 (m, 2H), 2.41 (dt, J =
12.5, 6.6 Hz, 1 H), 2.04-1.94 (m, 1H). **C-NMR (100 MHz, CDCls): & = 176.9, 135.5,
117.4, 80.4, 28.2, 28.2. IR (thin film, cm'l): 2957, 2921, 2851, 1772, 1734, 1558, 1457.
HRMS calc’d for CgHgO, = 112.0524, found = 112.0520
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Synthesis of Cyclopropane Hemimalonate for Dodecanolide:

Vinyl cyclopropane (-)-1.81 (0.250 g, 1.36 mmol) and 1-octene (0.26 mL, 1.63

mmol) were dissolved in DCM and the reaction vessel was purged with Argon. Grubbs |1
(0.056 g, 0.068 mmol) was added as one portion. The purple solution was heated to
reflux for 3 hours. Florisil® was added and the mixture was stirred for another 20
minutes. The reaction mixture was filtered, concentrated and flushed through a plug of
silica.
The crude octenyl cyclopropane was taken up in MeOH (5 mL) and treated with 1.7 M
NaOH (1.6 mL, 2.72 mmol). The reaction was stirred at room temperature for 2.5 hours,
and then the reaction was quenched with H,O. The organic was extracted with EtOAc,
and the aqueous layer was acidified with 5% HCI. The agueous was extracted 3x with
EtOAc to obtain the product. The organic was dried with MgSQO,, filtered and
concentrated to obtain 1.581 (0.300 g, 1.18 mmol) in an 87% vyield over the two steps.

MeO,C, CO,H 'H-NMR (400 MHz, CDCls): & = 5.82 (dt, J = 15.2, 7.0

Hz, 1H), 5.25 (dd, 15.2, 8.6 Hz, 1H), 3.81 (s, 3H), 2.73 (q,

8.6 Hz, 1H), 2.20-1.90 (m, 4H), 1.36-1.21 (m, 9H), 0.87 (t,

7.0 Hz, 3H). *C-NMR (100 MHz, CDCls): & = 174.2, 170.5, 138.3, 123.4, 53.0, 40.3,

33.2, 32.6, 31.6, 29.7, 28.9, 28.7, 23.8, 22.6. IR (thin film, cm™): 2925, 2855, 1772,

1734, 1456, 1436, 1338, 1262, 1162, 967. HRMS calc’d for C14H,04 = 254.1518, found
= 254.1524. (Isolated in 7:1 cis:trans)

X

O Reagents employed: 1.581 (0.130 g, 0.511 mmol); LiCl (0.043
g, 1.02 mmol); MesN'HCI (0.068 g, 0.714 mmol); DMF (4
mL); Yielded 1.78l as a clear oil, 78% (0.078 g, 0.397 mmol).
Rf = 0.48, 30% EtOAc/hexanes. *H-NMR (400 MHz, CDCls):
8 =5.80 (dt, J = 15.3, 7.0 Hz, 1H), 5.48 (dd, J = 15.3, 7.0 Hz,

1H), 4.88 (dd, J = 7.6, 7.0 Hz, 1H), 2.55-2.50 (m, 2H), 2.39-2.31 (m, 1H), 2.08-2.03 (m,

2H), 2.01-1.92 (m, 1H), 1.41-1.34 (m, 2H), 1.32-1.22 (m, 6H), 0.87 (t, J = 7.0 Hz, 3H).

O
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BC-NMR (100 MHz, CDCl3): 6=177.0, 135.8,127.3, 110.0, 81.1, 32.1, 31.6, 28.8, 28.8,
28.7, 22.6, 14.1. IR (thin film, cm™): 2926, 2855, 1773, 1734, 1457, 1176, 969. HRMS
calc’d for C12H200, = 196.1463, found = 196.1460. (Isolated in 7:1 cis:trans)

Reduction of Olefin:

Lactone 12 (0.175 g, 0.892 mmol) was dissolved in THF:H,0 (8:8 mL). Tosylhydrazine
(1.66 g, 8.91 mmol) and sodium acetate (0.951 g, 11.6 mmol) were added and the
reaction mixture was heated to reflux for 24 hours. Water was added to quench the
reaction and the aqueous was extracted with ether 4x. The organic was dried with
MgSQ,, filtered and subjected to column chromatography. The product 1.82 (0.173 g,

0.867 mmol) was isolated in a 98 % yield.

O Rf=0.49, 30% EtOAc/hexanes. *H-NMR (600 MHz, CDCls):
8 = 4.51-4.44 (m, 1H), 2.56-2.48 (m, 2H), 2.35-2.26 (m, 1H),
1.77-1.70 (m, 1H), 1.62-1.55 (m, 1H), 1.49-1.41 (m, 1H),
1.40-1.22 (m, 12H), 0.88 (t, 7.0 Hz, 3H). *C-NMR (150
MHz, CDCls): & = 177.3, 81.0, 35.6, 31.8, 29.4, 29.3, 29.2,

28.9, 28.0, 25.2, 22.6, 14.1. IR (thin film, cm™): 2926, 2855, 1776, 1458, 1352, 1179,

1017, 914. HRMS calc’d for C1,H2,0, = 199.1698, found = 199.1703 (M + H). 94% ee

calculated from Mosher’s ester. *°F-NMR (376 MHz, CDCls): 6 = -71.29 (s, 97), -71.36

(s, 3).

O
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Chapter 2. Kainic Acid
Section 2.1 Isolation and Biological Activity

(-)-(o))-Kainic acid 2.1 was first isolated in 1953 by the group of Takemoto® from
the marine alga Diginea simplex, along with its C-4 epimer (+)-allokainic acid 2.2. It was
named after ‘Kaininso’, the Japanese name of the mother alga®. Over two decades later,
in 1975, it was isolated again from related alga Centrocerus clavulatum® and as well the
Corsican moss Alsidium helminthocorton® in the early 1980s. Shortly after the isolation
of (-)-(o))-Kainic acid, Morimoto® deduced the relative stereochemistry around the
pyrrolidine core; his stereochemical assignment was confirmed a few years later by X-ray
analysis®>. The first total synthesis by Oppolzer® (vide infra) defined the absolute
stereochemistry of the pyrrolidine ring as (S, S, S) in relation to the C-2, C-3, and C-4

carbons.

//’z{ &\\\ COzH
H

21

(-)-()-Kainic acid (+)-allokainic acid
Figure 2.1 Structures of Kainic Acid and Allokainic Acid

Over the last 20 years there have been over 30 total syntheses of Kainic acid
reported due to its unique biological activity. The Diginea simplex alga has been used for
over a 1000 years in Japan for its anthelmintic (anti-intestinal worm) properties. It wasn’t
until much later that it was discovered that the active ingredient, Kainic acid, was much
stronger than the santonin, the best anthihelmintic drug at the time, with virtually no side
effects®. Kainic acid has also been shown to mimic the biological activity of L-Glutamic
acid. They both activate ionotropic glutamic receptors which upon overexposure can lead
to cell death. Not long after the similarity between kainic acid and glutamic acid was
discovered, kainic acid was tested on animals to determine its potential neurological

effects. It was found to induce motor hyperactivity as well as cause seizures in the
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animals. The neurons that had come in contact with kainic acid had succumbed to cell
death; this feature mimics the effects of a variety of different neurological disorders
present in humans, such as strokes, epilepsy and Huntington’s disease. The ever
increasing interest in the biological activity of Kainic acid has led to it being a target of

great interest to the synthetic organic community.

Section 2.2 Total Syntheses of Kainic acid

Due to the vast number of total syntheses of kainic acid, this section will describe
the very first total synthesis, followed by a number of recent total syntheses. The first
total synthesis was completed by Oppolzer and Thirring in 1982, starting from a
derivative of (S)-glutamic acid and highlighted by an intramolecular ene reaction. To
establish the core pyrrolidine ring (Scheme 2.1), Boc-protected (S)-glutamic acid 2.3,
was reduced with borane and subsequently protected with a TBS group to yield 2.4 in a
52% vyield over the two steps. 2.4 was then alkylated with 2.5, in a 77% yield. To set up
the required 1,6-diene 2.7 for their ene-type reaction, they needed to form an
o,pB—unsaturated ester. They completed this transformation by first selenation of an
enolate, followed by oxidation and selenoxide elimination to form desired 2.7 in a 48%
yield over the 3 steps. Diene 2.7 was then smoothly converted to pyrrolidine 2.8 via an
intramolecular ene reaction in a 70% vyield, while installing the required stereochemistry
for Kainic acid. Simple TBS removal, followed by oxidation up to carboxylic acid 2.9,
after saponification and a Boc-deprotection furnished kainic acid in an overall 5% vyield.
Although Oppolzer’s total synthesis is quite a few more steps than what is commonly
seen today, this synthesis set the bar for the following syntheses that will be described

herein.
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2.7 2.8 2.9

Scheme 2.1 Oppolzer’s Total Synthesis of (-)-(ot)-kainic Acid

In 2012, Li’s group developed a novel [3+2] samarium iodide mediated radical
cyclization of a cyclopropyl ketone and an alkyne.” Starting from D-Serine methyl ester
2.10, the amine functionality was tosyl protected followed by TBS protection of the
alcohol to form 2.11 in 87% over the two steps (Scheme 2.3). The ester was then reduced
to the aldehyde which was then subjected to Wittig olefination to form o,f—unsaturated
ketone 2.12. The ketone was taken through a Corey-Chaykovsky cyclopropanation and
the amine was alkylated with 1-bromo-2-butyne, to give 2.13 as a mixture of

diastereomers in 79% yield over 2 steps.
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1. TsCl, NEtg
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2. TBSC|, 1. DIBAI-H, Tol
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Scheme 2.2 Li’s Formation of [3+2] Cyclization Precursor

With the cyclization precursor 2.13 in hand, they investigated their key reaction.
After optimization, they were able to isolate their desired cyclized ketone 2.14 in 81%
yield as a mixture of inconsequential diastereomers (Scheme 2.3). The olefin was
isomerized into conjugation 2.15 using DBU, providing the necessary stereochemistry at
the C-3 and C-4 positions. The olefin underwent ozonolysis followed by an oxidative
work up to reveal a carboxylic acid, which was then protected as the methyl ester to give
2.16 in a 78% yield. The remaining ketone was converted to the isopropenyl group 2.17
using a Tebbe olefination in a 72% yield. A one-pot TBS deprotection, Jones oxidation
revealed the acid at the C-2 position, and then deprotection of both the methyl ester at the
C-3 position and the tosylated amine provided kainic acid in 83% yield over the 3
synthetic operations. The synthesis was completed in 15 linear steps in an overall 24%
yield. While this synthesis is quite a bit longer than Oppolzer’s, the isolated yield of

Kainic acid is significantly higher over the entire process.
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Scheme 2.3 Li’s Completed Total Synthesis

Also in 2012, Evans developed a rhodium catalyzed ene-cycloisomerization using
alkylidene cyclopropanes (Scheme 2.4).2 The synthesis starts with alcohol 2.18, which
underwent a Dess-Martin oxidation followed by an in situ Witting olefination to form the
desired o,B-unsaturated ester. The carbamyl nitrogen was then alkylated with 1-
vinylcyclopropyl tosylate to install the cyclopropane moiety 2.19 in an 84% vyield. The
ester was reduced with DIBAL-H to provide their ene-cycloisomerization precursor 2.20.
The rhodium catalyzed alkylidene cyclopropane ene-rearrangement formed the desired
pyrrolidine 2.21 in a 69% vyield. 2.21 was then oxidized to the corresponding methyl ester
2.22 using a modified Corey procedure. The cabamyl ring was solvolitically cleaved to
give a primary alcohol that was oxidized to the acid using Jones reagent, and finally
kainic acid was revealed by a global deprotection using base. The sequence took 8 steps

and provided the natural product in a 17 % overall yield.
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Scheme 2.4 Evans’ Total Synthesis of Kainic Acid

In 2014, Shinada and co-workers developed a copper catalyzed Michael addition-
cyclization of a chiral isocyanide 2.24 and an o,p—unsaturated ketone 2.23 to access the
pyrrolidine core of Kainic acid (Scheme 2.5).° Using chiral isocyanide 2.24, they
attempted to form the pyrrolidine ring under basic conditions; this led primarily to
auxillary cleavage. When they tried the reaction without base, they were able to isolate
the desired pyrroline 2.25 in a 54% yield. With pyrroline 2.25 in hand, they next cleaved
the sultam auxillary and protected the nitrogen with a Boc group to give 2.26. The ester
was then saponified and conjugate reduction was completed with L-selectride. Direct
conjugate reduction of the methyl ester substrate 2.26 led to the wrong epimer at C-4.
The acid was re-esterified and the ketone was homologated using the Nozaki reagent to
give 2.28. The methyl ester was once again saponified and the substrate was treated with
TFA to cleave both the t-butyl ester as well as the Boc protecting group. This series of

reactions led to Kainic acid in 9 linear steps in an overall yield of 17 %.
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Scheme 2.5 Shinada’s Total Synthesis of Kainic Acid

Section 2.3 Diazomalonate Cyclopropanations and Reactivity of Related Diazo
Compounds

Since the seminal review on the cyclopropanation of alkenes and aromatics with
ethyl diazoacetate,™® this field of chemistry has blossomed into a wide variety of different
areas. Specifically, advances in catalyst design can arrive at chemo-, diastereo-, or
enantioselective products as desired. Diazomalonates are an interesting class of
compounds as they can provide not only a more reaction diazo species, but also another
functional handle for further chemical manipulations. The mechanism of
cyclopropanation of diazo compounds is well understood.’’ Starting from diazo
compound 2.29, a diazonium complex forms with the metal to provide 2.30 (Scheme
2.6). This complex can then extrude N gas to produce metal carbenoid 2.31. Due to the
highly electrophilic nature of diazomalonates, the olefin 2.32 will attack the metal
carbenoid forming a negative charge on the carbenoid carbon. This species can then
attack back onto the newly formed carbocation to provide cyclopropane 2.33.
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Scheme 2.6 Diazomalonate Cyclopropanation Mechanism

Section 2.3.1 Reactivity of Diazo Species with Olefins

The stereoselectivity of the products obtained from the reaction of diazo species
and olefins can be predicted by the electronics of the olefin. Electron neutral olefins 2.34
primarily give cyclopropanated products 2.36 (Scheme 2.7, eq. 1).> However, when the
olefin is electron-rich 2.37, the product obtained appears to be the result of a [3+2]
cycloaddition 2.38 (Scheme 2.7, eq. 2).* It is believed that the olefin is first
cyclopropanated, but due to the electronics of the product, the ring can be rearranged

through the development of an oxocarbenium ion.

o) Rh(OAc H
IZSCM s < CO Me
HLcone — > ""§ 1)
N 55% z o)
2 H
2.34 2.35 2.36
o) Cu(acac),
DCM N\
| Scome T Co,Me (2)
o) N 57% o O
2
2.37 2.35 2.38

Scheme 2.7 Reactivity of Diazo Species with Olefins

Section 2.3.2 Reactivity of Diazo Species with Dienes
Dienes can be useful cyclopropanation partners as the products lead to vinyl

substituted cyclopropanes which can be manipulated in subsequent synthetic steps.** The
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main obstacle of these reactions are the competitive reactivity of the diazo species and
each olefin in the system. With ethyldiazoacetate 2.40 and terminally substituted dienes
2.39, the regiochemical preference is the less sterically hindered double bond 2.41
(Scheme 2.8, eq. 1).> However, when the substitution is internal, at the 2-position 2.43,
the preference is now for the substituted double bond 2.44, with greater selectivity for

electron-rich olefins (Scheme 2.8, eq. 2).

_ EtO,C Rh,(OAC), COEt CO.Et
AN g m ey "
N % R X o
2.39 2.40 241 2.42
R = Me 61%, 88:12
R = Ph 84%, 98:2
R = OMe 90%, 89:11
CO,Et
R EtO,C Rhy(OAc), CO,Et
N m — R )
N, P>
R
2.43 2.40 244 2.45

R = Me 99%,62:38
R = Ph 91%, 69:31
R = OMe 88%, >99:1

Scheme 2.8 Effects of Diene Substitution with Ethyldiazoacetate

The effects of diene substitutions are different when diazomalonates 2.29 are
employed as the cyclopropanation precursor (Scheme 2.9). A reaction with
cyclopentadiene 2.46 for example, the expected cyclopropanation is observed 2.45 due to
the unpolarised nature of the diene.'® However, when an electron-rich diene 2.48 is used,
cyclopropanation is not observed and an annulated product is seen as the sole product
2.49. This is believed to be due to the stability of the zwitterionic intermediates

developed in the reaction.*’
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MeO,C_CO,Me Rh2(0AC)s MeO,C
2
A — M

N> MeO,C
2.29 2.46 2.47
MeO,C~_-CO,Me TBS0 Rh,(OAC)4 CO,Me
\n/ ~N > TBSO )
N, co,Me
2.29 2.48 2.49

Scheme 2.9 Diene Reactivity with Diazomalonate

Section 2.3.3 Reactivity of Aldehyde-ester Diazo Compounds

In 1988, Wenkert developed the reactivity of a new type of diazo species, one that
had a geminally substituted ester and aldehyde 2.50. When it was reacted with
butylvinylether 2.48, it did not undergo a cyclopropanation event, but a cyclization to
form dihydrofurans 2.50 (Scheme 2.10)."

ha(OAC)4
J ) DCM EtO,C
COEt Z—>_
BuO HJ\n/ / OBu
N> (@]
2.50 251 252

Scheme 2.10 Wenkert’s Cycloaddition of 2.51 with Butylvinyl Ether 2.50

Since the seminal work of Wenkert, diazospecies 2.51 has been utilized in the
synthesis of several different heterocycles. It has been reacted with nitriles 2.53,*
alkynes 2.55% and aryl oximes 2.57%, to form 1,3-oxazoles 2.54, furans 2.56 and

pyridine N-oxides 2.58, respectively as products (Scheme 2.11).
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Q Rhy(OAc),

__PheN Y
N2 CO,Et
2.51 253 254
Q 1,2-CgH,Cly | 0
HJH]/COZEIZ R— —_— / )

N2 CO,Et
2.51 255 (CpRhC,), 256

COE N LOH  MeOoH N0
N2 Z

CO,Et

2.51 257 258

Scheme 2.11 Recent Transformations of 2.51

Section 2.4 Our Retrosynthetic Proposal

With the knowledge in hand that cyclopentadiene will undergo a smooth
diazomalonate mediated cyclopropanation, and that asymmetric cyclopropanations are
possible, we proposed a new cyclopropane route to Kainic acid. It was envisioned that the
isopropenyl group could be installed through some previously developed chemistry,
through a Tebbe olefination or use of the Nozaki reagent. The di-acid moiety we
envisioned arising from ozonolysis or a dihydroxylation and cleavage of a cyclopentene
unit 2.59 (Scheme 2.12). We thought that pyrrolidine of kainic acid could come from a
lactamization on the appropriate amine and the ketone functionality could be introduced
to 2.60. The amine moiety could be installed via our previously established azide ring
opening methodology,?? which would arrive us back at a cyclopentene-derived
cyclopropane hemimalonate 2.62.
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Scheme 2.12 Our Retrosynthetic Analysis

Section 2.5 Results and Discussion

To begin our synthesis we focused on the synthesis of 2.62, which could be
achieved in a two-step process. Cyclopentene cyclopropane 2.45 was synthesized from
diazomalonate 2.29, cyclopentadiene 2.46, and Rhy(OAC)s, (1 mol%) in a 64 % vyield.
Cyclopropanediesters 2.47 was then saponified under the standard conditions to furnish

hemimalonate 2.62 in a 95 % yield.

Rhy(OAC), H H

MeOzC\"/COZMe @ DCM MeOZC@ NaOH, MeOH Meozc@
— — \
N, 64% MeO,C 95% HO,C 5
2.29 2.46 247 2.62

Scheme 2.13 Formation of Cyclopentene Cyclopropane Hemimalonate 2.62

Having our desired hemimalonate 2.62 in hand, we began the investigation into
the azide ring opening of this substrate. Unfortunately, when we attempted the tandem
ring opening dealkoxycarbonylation sequence, we obtained a mixture of products in a 50
% yield. This appeared to be an equal intractable mixture of our desired compound 2.61
and the Sy’ addition product 2.63 (Scheme 2.14). This was not a too surprising result, as a

further analysis of the literature showed that these cyclopropanes are prone to Sy’
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nucleophilic additions.'®?® This reactivity was also evident in our initial work with the

vinylcyclopropane hemimalonate.

H NaNg, NH,CI

7

% 2-MeO(CH),0H:H,O MeO,C. H
Me02C@ - 2 L( ) + MeO,c_ H N
HO,C 50%, 1:1 R —\

N3

T/,

2.62 2.61 2.63
Scheme 2.14 Tandem Azide Ring Opening Dealkoxycarbonylation of 2.62

We were not discouraged by this result; we thought that maybe by just changing
our choice of methodology, perhaps we could still obtain kainic acid. What we next
envisioned was that our cyclopropane rearrangement lactone formation®* could result in
formation of a key substrate 2.61 and based on the lactone methodology the
regioselectivity in this case, should not be an issue (Scheme 2.15, eq.1). With lactone in
hand, we could convert 2.64 to lactam 2.60, and install the ketone afterwards. When we
took 2.52 using our optimized conditions for lactone formation we did see lactone 2.64,
but only in a 40 % vyield (Scheme 2.15, eq. 2). Unfortunately, this yield could not be

improved upon and did not seem like a great start to our synthesis.

o)
._4 S—COH —Jé H f@ Meozc:@
S = 00 = L0 =0

N COzH N\\\ HOZC }?l
H H
2.1 2.59 2.64 2.62
H, LiCl, MeaN-HCI H
MeOQC@ DMF, 150 °C, mW [@ (2)
HOzg |§| 40% o O\\‘
2.62 2.64

Scheme 2.15 Second Generation Retrosynthesis and Result
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Due to the poor yield we obtained, we thought that if we had a ketone in the
starting material 2.65, instead of getting a decarboxylation to occur, perhaps the ketone
would remain on our product 2.66 and we would not have to install it at a later time. This
idea would require the use a keto-ester diazo compound as our starting material (Scheme
2.16.

LiCl, MesN'HCI
DMF, 150 °C, mW o

O O\\‘

2.65 2.66
Scheme 2.16 Potential Keto-Ester Lactonization Reaction

Starting from keto-ester diazo species 2.67, a rhodium catalyzed cyclopropanation
reaction occurred again with cyclopentadiene 2.46, which proceeded to give 2.68 in a
modest 40 % yield. We then tried to saponify this material anyways to give 2.65, but we
were unsuccessful under either our standard conditions or under more forcing conditions,
which led to decomposition. The problem with saponification can be attributed to the
diastereoselective formation of the cyclopropane. As per Charette’s research on directing
groups of acetoacetate diazo compounds,® the ketone has a preference for being trans to
the substitution on the olefin. This would put the ester in the face of the cyclopentene

unit, perhaps making it more difficult to saponify.

H

Rhy(OAc), @ NaOH, MeOH %
MeO,C HO,C
)l\n/coznvle @ __Dbem o 2 27N

~

40% o= ,j

2.67 2.46 2.68 2.65
Scheme 2.17 Attempting to Pre-install the Ketone Functionality

While this was a discouraging result, we thought that perhaps we could still utilize

compound 2.68. There is precedence for ketone-cyclopropane rearrangements to form a
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variety of different dihydrofurans.?® Taking compound 2.68 and with ytterbium triflate in
toluene, we were able to synthesize the dihydrofuran 2.69 in a 65 % yield (Scheme 2.18,
eq. 1). While there is no methyl group at the C-5 position of Kainic acid, we were
encouraged by the success of this rearrangement. Perhaps if we had an aldehyde-ester
diazo compound similar to that of 2.51, as shown in the work of Wenkert (vide supra),
we could cyclopropanate cyclopentadiene 2.46 and then rearrange the aldehyde 2.70 to

form dihydrofuran 2.71 which maps onto Kainic acid perfectly (Scheme 2.18, eq. 2).

Yb(OTf
MeO,C '(I'ol. s Meozcz/ : "
—>
O 65% o
2.68 2.69
Yb_(l_orf)s MeO,C
MEOZC)@ 2 5
""""" > / )
0= 0
2.70 271

Scheme 2.18 Ketone Rearrangement and Possible Aldehyde Rearrangement

The synthesis of diazo compound 2.51 starts with taking thionyl chloride 2.72 and
DMF 2.73 to form the Vilsmeier-Haack reagent (Scheme 2.19). The reagent is taken in
chloroform and reacted with ethyldiazoacetate to form compound 2.51 in a 33% yield.?
Next we intended to make cyclopropane 2.70, but we observed a different result. 2.51
was then reacted with cyclopentadiene 2.46 in the presence of Rhyesp, (1 mol %) and
gratifyingly received what appeared to by our desired cyclized adduct 2.71 (vide infra) in
65 % yield. The same reaction with Rhy(OACc), as the catalyst, was much lower yielding
for this reaction. This result appears to follow the pattern of reactivity with 2.51, where

cycloadditions are the main products of these reactions.
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N, c1”> e ']' H 33%
N2
2.40 2.72 2.73 251
O Rh,(esp),
Symon @y T o
. 65% /
2 o}
251 2.46 271

Scheme 2.19 Formation of 2.51 and Dihydrofuran 2.71

We then converted the dihydrofuran 2.69 to dihydropyrroles 2.71 using a
palladium catalyzed procedure?® with p-anisidine 2.70 in 45 % vyield (Scheme 2.20, eq.
1). By switching the amine source from p-anisidine to benzyl amine 2.72, we could
increase the yield of dihydropyrrole formation to 62 % (Scheme 2.20, eq. 2).

Pd(PPha)s
EtO,C TsOH-H,0 EtO,C
Tol.
m PMPNH, ——— m @)
45% N
o PMP
271 2.74 2.75
Pd(PPha)s
- TsOH-H,0 EtO,C
2 Tol.
J BaNH, —————— / @)
62% N
O Bn
271 2.76 2.77

Scheme 2.20 Formation of Dihydropyrroles 2.75 and 2.77 from Dihydrofuran 2.71

Having the core framework desired for Kainic acid, we decided to try to

manipulate the ester functionality to the isopropylidene. We attempted to saponify the
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ester in order to convert it to the Weinreb amide, however this was unsuccessful. We
attempted to make the Weinreb directly by using Weinreb’s amine and phenyl
magnesium chloride,® but this also did not work. Finally, we tried to add methyl
Grignard directly to the ester and in this case decomposition of the starting material 2.75
was observed. When analyzing compound 2.75 again, we had maybe thought about this
functional group incorrectly. While at first blush it looks like an a,B-unsaturated ester, it
could also be thought of as a vinylogous carbamate. In order to access the ester, we
needed to reduce the conjugated double bond, while not disturbing our cyclopentene
double bond. To reduce the conjugated double bond we first tried nickel borohydride, but

unfortunately it reduced the wrong olefin (Scheme 2.21).

EtO,C NaBH, EtO,C,
MeOH
ot PRI S e
N 98% N
PMP PMP
2.75 2.78

Scheme 2.21 Nickel Borohydride Reduction of 2.75

Reducing with sodium cyanoborohydride resulted in no reaction at all. Finally,
taking 2.73 with sodium triacetoxyborohydride in acetic acid allowed for reduction of the
conjugated olefin to compound 2.74 (Scheme 2.22). Due to purification issues of 2.79,
we took the product crude and treated it with excess methyl Grignard to dialkylate the
ester. Once again, this substrate was difficult to purify by column chromatography.
Taking the crude material of this compound, we added mesyl chloride and triethylamine
and dehydrated the tertiary alcohol to the required isopropenyl group 2.80 in an overall

yield of 49% over the three steps.
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NaBH(OAc) 1. MeMgBr, Et,0
EtOzCz : ACOH - Etozcz : 2. MsCl, NEts, Etz0
—
/N N 49% over N
Bn Bn 3 steps Bn
2.77 2.79 2.80

Scheme 2.22 Conversion of Carbamate 2.77 to Isopropenyl Tertiary Amine 2.80

It was at this point that we were interested in the relative stereochemistry of the
three chiral centres in compound 2.80. Due to the splitting patterns that we could see in
the proton NMR, we thought that getting 2-D NMR data on this compound (COSY,
HSQC, and HMBC) we would be able to determine orientation of product 2.80. Upon
analysis of the 2-D NMR data, it was determined that our skeletal assignment was
incorrect. The key correlations that we observed are highlighted in Figure 2.2. We could
not find any COSY correlations between what we had originally assigned as either of the
methylene protons (H, and Hy) and our internal olefin proton (Hc). However, we could
see correlations between both bridgehead protons and both internal olefin protons (H and
H., Hqg and Hg). That led us to structure 2.81 as being our product instead of 2.80.

COSsY CcCOoSsY
Hf}—\
Ha \\Hbrj He
Hc Hy
Sy
Bn He Hg Bn He COSsY
280 A 2.81

Figure 2.2 Structural Reassignment Based on 2-D NMR Studies
Based on the new structural information we had obtained on 2.81, this led us to

believe that in the conversion from dihydrofuran 2.71 to dihydropyrrole 2.77, we did not

get our desired rearrangement, but the same Sy’ type of addition we had seen in our azide
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reaction (Scheme 2.14). We decided to go back and get the same 2-D NMR data on our
dihydrofuran 2.71 as well and to our dismay, once again the COSY correlations that we
observed were not what we had expected. The methylene protons (H, and Hp) did not
have a correlation with the olefin proton H,. We did see a COSY correlation between
bridgehead proton H¢ and olefin proton H., leading us to reassign the structure of

dihydrofuran 2.71 to bicyclic oxepine 2.82.

cosy ’_C\O‘SY
e
EtO,C. 4> P
C
/
o He Ha
271 WA
cosy

Figure 2.3 Structural Reassignment of 2.71 to 2.82

Section 2.6 Summary and Future Work

In summary, while we were unsuccessful in completing the total synthesis of
Kainic acid, we did discover a reaction that, to our knowledge, has not been explored yet.
We could take diazo species 2.51 with cyclopentadiene and from 2.82 cleanly and in 65%
yield. What is more interesting is that taking oxepane 2.82, we were able to convert it an
azepane while still retaining the bicylic product. We believe that if we could form
pyrroline 2.75, we have developed a solution of converting the vinylogous carbamyl
group to the required isopropenyl group in Kainic acid. Future work would be to attempt
this oxepine formation with other cyclic and acyclic dienes to determine the generality of

this reaction.
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Section 2.7 Experimental
General

Infrared spectra were obtained as thin films on NaCl plates using a Bruker Vector
33 FT-IR instrument. H, and **C NMR experiments were performed on Varian Mercury
400, Varian Inova 600 and Inova 400 instruments and samples were obtained in CDCl3
(referenced to 7.26 ppm for *H and 77.0 for *C). Coupling constants (J) are in Hz. The
multiplicities of the signals are described using the following abbreviations: s = singlet, d
= doublet, t = triplet, q = quartet, m = multiplet, br = broad. High resolution mass spectra
(HRMS) were obtained on a Finnigan MAT 8200 spectrometer at 70 eV. Toluene,
tetrahydrofuran (THF), ether, acetonitrile (MeCN) and dichloromethane (DCM) were
dried and deoxygenated by passing the nitrogen purged solvents through activated
alumina columns. All other reagents and solvents were used as purchased from Aldrich,
Alfa Aesar, or Caledon. Reaction progress was followed by thin layer chromatography
(TLC) (EM Science, silica gel 60 Fys4) visualizing with UV light, and the plates
developed using acidic anisaldehyde. Flash chromatography was performed using silica
gel purchased from Silicycle Chemical Division Inc. (230-400 mesh). High-pressure
reactions were carried out on a LECO™ Tempres High-Pressure chemical reactor.

Microwave reactions were performed in a 400 W Biotage Initiator 2.0 microwave reactor.

Procedure for the Synthesis of Diazo Species 2.51
2.51 was synthesized using a literature procedure.”’

Thionyl chloride (1 equiv.) was added dropwise to anhydrous DMF (1 equiv.) and
the mixture was heated at 40 C for 2 h. The reaction mixture was then evaporated to give
an off-white solid. The solid was dissolved in chloroform and ethyl diazoacetate (2
equiv.) was added dropwise over a period of 5 min at 0 C and stirring continued for 1 h at
room temperature. The chloroform was removed, ether added and the white precipitate
filtered off. The white precipitate was dissolved in acetic acid (10%) and stirred overnight
at room temperature. The aqueous solution was extracted with ether twice, the combined

organic layers washed with aqueous saturated sodium hydrogen carbonate, aqueous
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sulfuric acid (10%), brine and dried over MgSQO,. The resulting yellow oil (0.420 g, 2.96

mmol, 33%) was used without further purification with data as reported in the literature.

o} Reagents employed: 2.72 (0.653 mL, 9.00 mmol); 2.73 (0.697 mL, 9.04
HJ\[]/COZEt mmol); 2.40 (1.91 mL, 18.2 mmol); chloroform (4 mL); Yielded 2.51 as
N2 a yellow oil, 33% (0.420 g, 2.96 mmol). Spectral properties are identical

to those previously reported.?’

General Procedure for the Reaction of Diazo Species with Cyclopentadiene

Cyclopentadiene 2.46 was distilled from dicyclopentadiene prior to use, due to
dimerization of 2.46 at room temperature. Rhodium catalyst (2 mol %) was added to a
solution of cyclopentadiene and DCM at room temperature. The diazo species in DCM
was added dropwise and the solution was heated to reflux. After the reaction was deemed
to be complete by TLC analysis, the solution was purified via flash chromatography on
silica gel and the product was isolated.

MeO c@ Reagents employed: 2.46 (1.00 g, 15.1 mmol); Rh,OAc, (0.033 g,
2
0.747 mmol); 2.29 (1.20 g, 7.59 mmol); DCM (15 mL); Yielded 2.47

as a colourless oil, 65% (0.968 g, 4.93 mmol). Spectral properties are

MeOZC

identical to those previously reported.®
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Reagents employed: 2.46 (1.05 g, 15.9 mmol); Rh,OAc, (0.047 g, 1.06
mmol); 2.67 (1.50 g, 10.6 mmol); DCM (15 mL); Yielded 2.68 as a
colourless oil, 40% (0.760 g, 4.22 mmol). *H-NMR (400 MHz,
CDCl3): 6 =5.82-5.78 (m, 1H), 5.68-5.63 (m, 1H), 3.68 (s, 3H), 2.83-2.78 (m, 1H), 2.75-
2.73 (m, 1H), 2.72-2.69 (m, 1H), 2.43 (dt, J = 6.2, 1.2 Hz, 1H), 2.25 (s, 3H)

MeO,C

O

EtO,C Reagents employed: 2.46 (0.059 mL, 0.702 mmol); Rhsesp, (0.001 g,
0.014 mmol); 2.51 (0.200 g, 1.41 mmol); DCM (3 mL); Yielded 2.82 as

an orange oil, 65% (0.082 g, 0.455 mmol). *H-NMR (600 MHz, CDCl5): 6 = 7.10 (d, J =
1.2 Hz, 1H), 6.50 (dd, J = 5.3, 2.3 Hz, 1H), 5.52 (dd, J = 5.3, 2.3 Hz, 1H), 5.03 (m, 1H),
4.14 (g, J = 7.0 Hz, 2 H), 3.33 (m, 1H), 2.01 (m, 1H), 1.82 (d, 10.6 Hz, 1H), 1.25 (t, J =
7.0 Hz, 3H); BC NMR (150 MHz, CDCl3): 6 = 166.1, 152.4, 143.3, 121.7, 111.7, 81.4,
59.8, 35.7, 34.7, 14.3. HRMS calc’d for C1oH1203 = 180.0786, found 180.0791.

Procedure for the saponification of 2.47

Cyclopropanes were dissolved in MeOH and 1.7M NaOH (1.2 eq.) with constant
stirring. The solution was stirred for 1.5 h then was diluted with EtOAc and water to
separate layers. The aqueous layer was the acidified with 5% HCI to reach pH 2, then
extracted three times with EtOAc. The combined organic layers were washed with brine,

dried over MgSO.,, filtered and concentrated.*

MeO c@ Reagents employed: 2.47 (1.13 g, 5.76 mmol); NaOH (5 mL, 8.60
2
mmol); MeOH (5 mL); Yielded 2.62 as a colourless oil, 95% (1.00 g,

5.49 mmol). *H-NMR (600 MHz, CDCls): & = 5.83-5.80 (m, 1H), 5.68-
5.65 (m, 1H), 3.65 (s, 3H), 2.90 (dt, J = 6.5, 2.3 Hz, 1H), 2.84-2.79 (m, 1H), 2.74-2.68
(m, 1H), 2.54 (dd, J = 6.5, 6.5 Hz, 1H).

HO,C
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Procedure for Azide ring opening of 2.62

Sodium azide (1.2 equiv.) and ammonium chloride (1.4 equiv.) were added to a
solution of cyclopropane hemimalonate (1.0 equiv.) in 2-methoxyethanol:water (5.0
ml:0.5 ml). The mixture was stirred at reflux (125 °C) until the reaction was complete
(as determined by TLC analysis). The reaction was then quenched with water and
extracted with ether (3 times). The organic layers were then combined and dried with
magnesium sulfate.  Following filtration, the solvent was removed under reduced
pressure and the crude mixture purified by flash chromatography (EtOAc:Hexanes,

20:80) to yield the ring opened product as a mixture of regioisomers.

MeO,C Reagents employed: 2.62 (0.101 g, 0.554

+ MeO,C

\_Q L@”\b mmol); sodium azide (0.043 g, 0.661

N3 mmol); ammonium chloride (0.042 g,
0.785 mmol); 2-methoxyethanol:water; Yielded 2.61/2.63 as a 1:1 mixture of isomers,
50% (0.050 g, 0.276 mmol). *H-NMR (600 MHz, CDCls): (Both isomers) & = 6.07-6.05
(m, 1H), 6.03-6.01 (m, 1H), 5.82-5.80 (m, 1H), 5.73-5.70 (m, 1H), 4.40-4.37 (m, 1H),
4.06 (br s, 1H), 3.69 (s, 3H), 3.67 (s, 3H), 3.31-3.26 (m, 1H), 2.79-2.73 (m, 1H), 2.63-
2.57 (m, 1H), 2.52 (dd, J = 15.2, 7.0 Hz), 2.43-2.38 (m, 2H), 2.31 (dd, J = 15.8, 8.2 Hz,
1H), 2.21 (ddd, J = 14.0 7.6, 2.9 Hz, 1H), 2.07-2.02 (m, 1H), 1.89-1.84 (m, 1H).

Procedure for Lactone Formation

Cyclopropane hemimalonate, LiCl, and Me3sN'HCI were added to a microwave
vial and dissolved in DMF. The vial was sealed and heated for 40 minutes at 150 °C.
After the required reaction time the reaction was quenched with H,O and extracted with
ether. The organic layer was dried and the solvent was removed. The residue was

subjected to flash chromatography on silica gel and the product was isolated.
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m Reagents employed: 2.62 (0.100 g, 0.549 mmol); LiCl (0.047 g, 1.11
o mmol); MesN'HCI (0.073 g, 0.764 mmol); DMF (3 mL); Yielded 2.64 as a

yellow oil, 40% (0.027 g, 0.217 mmol). *H-NMR (600 MHz, CDCls): & = 6.09-6.05 (m,
1H), 5.87-5.84 (m, 1H), 5.50 (d, J = 7.6 Hz), 3.15-3.09 (m, 1H), 2.81 (dd, J = 18.2, 10.6
Hz, 1H), 2.75 (dd, J = 18.2, 8.2 Hz, 1H), 2.33-2.26 (m, 2H). *C NMR (150 MHz,
CDCl3): 6=177.1, 136.8, 129.0, 89.6, 39.5, 36.0, 35.1.

Procedure for the Ketone Cyclopropane Rearrangement

YbOTf; (20 mol %) was added to a solution of keto-ester cyclopropane 2.68 in
toluene. The mixture was stirred at room temperature until the reaction was complete (as
determined by TLC analysis). The solution was purified via flash chromatography on

silica gel and the product was isolated.

0.119 mmol); Toluene (3 mL); Yielded 2.69 as a yellow oil, 65%

(0.070 g, 0.388 mmol). *H-NMR (600 MHz, CDCls): & = 6.07-6.04 (m,
1H), 5.79-5.76 (m, 1H), 5.62 (br d, J = 9.4 Hz, 1H), 3.84-3.80 (m, 1H), 3.71 (s, 3H),
2.75-2.68 (m, 1H), 2.50-2.45 (m, 1H), 2.17 (s, 3H). *C NMR (150 MHz, CDCl3): & =
167.3, 166.7, 136.8, 106.2, 91.8, 50.7, 43.7, 40.0, 14.3.

MeO,C Reagents employed: 2.68 (0.107 g, 0.594 mmol); YbOTf; (0.074 g,
2/ S 7

General Procedure for the Palladium catalyzed azepane formation

Amine, p-TsOH'H,0, Pd(PPhs)4, toluene and oxepane were added sequentially to
a round bottom flask. Then the resulting mixture was stirred at 70 C overnight. After the
reaction was complete as monitored by TLC (30% EtOAc:hexanes), the reaction mixture
was evaporated and purified via flash chromatography on silica gel.?
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EtO,C Reagents employed: 2.74 (0.111 g, 0.901 mmol); p-TsOHH,0 (0.010 g,

@ 0.053 mmol); Pd(PPhs)s (0.021 g, 0.018 mmol); 2.82 (0.050 g, 0.301

PMP " mmol); Toluene (5 mL); Yielded oxepane as an orange oil, 45% (0.039

g, 0.137 mmol). 'H-NMR (600 MHz, CDCly): 5 = 7.31-7.30 (m, 1H), 7.07-7.04 and 6.88-

6.85 (m, AA’BB’, 4H), 6.12 (dd, J = 5.3, 2.9 Hz, 1H), 5.41 (dd, J = 5.3, 2.4 Hz, 1H), 4.51

(m, 1H), 4.16 (g, J = 7.0 Hz, 2H), 3.79 (s, 3H), 3.47-3.45 (m, 1H), 1.9 (dt, J = 10.6, 4.1

Hz, 1H), 1.72 (d, J = 10.6 Hz, 1H), 1.27 (t, J = 7.0 Hz, 1H). 3C NMR (150 MHz,

CDCl): 6 = 166.9, 156.3, 139.3, 137.2, 135.6, 121.6, 119.7, 114.6, 102.0, 63.2, 59.3,
55.5, 35.9, 34.3, 14.6.

EtO,C Reagents employed: 2.76 (0.097 g, 0.905 mmol); p-TsOHH,0 (0.010 g,

@ 0.053 mmol); Pd(PPhs), (0.021 g, 0.018 mmol); 2.82 (0.050 g, 0.301

Bn mmol); Toluene (5 mL); Yielded oxepane as an orange oil, 62% (0.050

g, 0.186 mmol). *H-NMR (600 MHz, CDCls): & = 7.38-7.34 (m, 2H), 7.32-7.29 (m, 1H),

7.26-7.23 (m, 2H), 7.17 (s, 1H), 5.99 (dd, J = 5.3, 2.9 Hz, 1H), 5.06 (dd, J = 5.3 Hz, 2.4

Hz, 1H), 4.44-4.32 (AB system, 2H), 4.15 (q, J = 7.0 Hz, 2H), 3.82-3.80 (m, 1H), 3.38-

3.36 (m, 1H), 1.81 (dt, J = 10.0, 4.1 Hz, 1H), 1.50 (d, J = 10.0 Hz, 1H), 1.27 (t, J = 7.0

Hz, 3H). *C NMR (150 MHz, CDCls): & = 141.1, 137.7, 134.6, 128.7, 127.9, 127.6,

119.5, 60.2, 59.2, 59.0, 35.6, 33.9, 14.7. HRMS calc’d for C17H19NO, = 269.1416, found
269.14009.

Procedure for the Conversion of the Vinylogous Carbamate to the Isopropenyl
Group

A solution of azapane in THF was added dropwise to a solution of NaBH(OAC)3

in AcOH. After the reaction was complete as monitored by TLC (30% EtOAc:hexanes),
the solution was diluted with EtOAc and the layers were separated. The aqueous layer
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was neutralized with saturated sodium hydrogen carbonate and then extracted three times

with EtOAc. The combined organic layers were dried with MgSO,4 and the solvent was

removed.
EtO,C Reagents employed: azapane (0.310 g, 1.15 mmol); NaBH(OAC);
(0.732 g, 0.345 mmol); AcOH (3.5 mL); THF (5 mL); Crude ester
Bn divided into three parts and one of them taken forward for the Grignard

addition.

The crude ester was then dissolved in ether and cooled to 0°C. A 3M solution of
MeMgBr was added dropwise over 5 minutes and the solution was warmed to room
temperature. After the reaction was complete as monitored by TLC (30%
EtOAc:hexanes), the solution was diluted with EtOAc and the layers were separated. The
aqueous layer was neutralized with a 5% solution of HCI and the aqueous layer was
extracted three times with EtOAc. The combined organic layers were dried with MgSO,

and the solvent was removed.

OH Reagents employed: crude ester (0.098 g, 0.361 mmol); MeMgBr (0.4 mL,
1.20 mmol); Et,0 (3 mL); Crude tertiary alcohol was carried forward in
N
N the next step.

The crude tertiary alcohol was dissolved in ether and MsCl was added to the
solution. The reaction was then cooled to 0°C and NEt; was added dropwise to the
solution. After the reaction was complete as monitored by TLC (30% EtOAc:hexanes),
the solution was diluted with EtOAc. The aqueous layer was extracted three times with
EtOAc and the combined organic layers were dried with MgSO,4. The solvent was

removed and the residue was purified via flash chromatography on silica gel.
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Reagents employed: crude tertiary alcohol; MsCI (0.081 g, 0.0707 mmol);

NEt; (0.489 g, 4.83 mmol); Et,O (3 mL); Yielded 2.81 as a colourless oil,
N=" 49% over three steps (0.038 g, 0.159 mmol). 'H-NMR (600 MHz, CDCls):
8 =7.37-7.34 (m, 2H), 7.33-7.29 (m, 2H), 7.25-7.22 (m, 1H), 6.31 (dd, J = 5.3, 2.9 Hz,
1H), 5.89 (dd, J = 5.9, 1.8 Hz, 1H), 5.20 (s, 1H), 4.91 (s, 1H), 3.58-3.56 (m, 1H), 3.55-
3.24 (AB system, 2H), 2.79 (d, J = 11.7 Hz, 1H), 2.65-2.62 (m, 1H), 2.43 (dd, J = 11.7,
5.9 Hz, 1H), 2.09-2.06 (m, 1H), 2.00 (d, J = 10.0 Hz, 1H), 1.73 (s, 3H), 1.61-1.57 (m,
1H). **C NMR (150 MHz, CDCls): & = 147.6, 139.7, 137.1, 128.7, 128.1, 126.7, 126.6,

111.5, 63.3, 61.2, 50.4, 41.3, 40.8, 38.4, 22.8.
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Chapter 3 Actinophyllic Acid
Section 3.1 Isolation and Biological Activity

In 2005, Carroll and co-workers were screening natural products with the
intention of determining which ones could upregulate fibrinolysis.® In this study, they

came across the natural product Actinophyllic Acid 3.1.

Figure 3.1 Actinophyllic Acid, 3.1

It was isolated from the leaves of Alstonia actinophylla, which was growing on
the Cape York Peninsula, Far North Queensland, Australia. The importance of this study
was due to the presence of thrombotic diseases in the developed world. Fibrinolysis is the
body’s process of breaking down blood clots in the blood stream. While Actinophyllic
acid does not act directly on blood clots themselves, it does interact with is
carboxypeptidase U (CPU) that inhibits fibrinolysis.> A suppression of fibrinolysis can
lead to a variety of different pathological consequences, such as pulmonary embolism
and myocardial infarction.>® Due to the biological activity and unique structural
framework of Actinophyllic acid, many studies have been developed methods to
synthesize it. These synthetic methods as well as the completed total syntheses will be

described herein.

Section 3.2 Studies Towards the Synthesis of Actinophyllic Acid

In 2009, Wood and co-workers revealed their synthetic plan for the synthesis of
Actinophyllic Acid (Scheme 3.1).” They envisioned creating the large eight membered
ring via a ring closing reaction of secondary amine 3.2 and an indole-quinonemethide

species to furnish 3.1. They believed that they could arrive at pentacyclic amine 3.2 from
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indole lactam 3.3. The indole and the quaternary center they believed they could
introduce through selective alkylation and indole formation procedures of bicyclic p-
ketoamide 3.4, which could be synthesized from a divinyl-cyclopropane rearrangement of
cyclopropane 3.5. Compound 3.5 could be formed from an intramolecular
diazoacetoacetamide cyclopropanation of 3.6.

OTBDPS

BnU\)I\/\
N
OTBDPS

34 35 3.6

OTBDPS OTBDPS

Scheme 3.1 Wood’s Retrosynthetic Plan

In the forward sense, starting from protected homo-propagyl alcohol 3.7, an enyne
cross metathesis furnished diene 3.8 in a 60-80% vyield. Displacement of the bromide
with benzylamine produced amine 3.9 in an 82% yield. This amine was then treated with
diketene to form a B-ketoamide, which was then subjected to Regitz diazo transfer to

furnish their cyclopropanation precursor 3.6 in 91% yield over the two steps.
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Grubbs 2,

4-bromo-1-butene, BnNH,, Nal
OTBDPS ethylene, DCM /\/\)J\/\ DMSO NHBn
_/ . X —_— \
- 60 - 80% Br OTBDPS 82% OTBDPS
3.7 38 3.9

Diketene p-ABSA, Et3N N,
THF o CH3CN:DCM o
BnN 6] 91% over BnN @)
S 2 steps S
OTBDPS OTBDPS

3.10 3.6

Scheme 3.2 Synthesis of Cyclopropanation Precursor

Through a vigorous catalyst screening, they eventually were able to synthesize
cyclopropane 3.5 in a 50-60% vyield using copper(TBS),. Enolization of 3.5 with
TBSOTf, followed by treatment with acid allowed for the divinylcyclopropane
rearrangement to form 3.4 in a 73% vyield. The bicyclic B-ketoamide 3.4 was alkylated
using a Tsuji-Trost allylation to arrive at 3.11 in a 91% yield. Under scandium triflate
catalyzed hydrazone synthesis, indolization was realized in a 64 % yield to give them
advanced intermediate 3.3. This brought an end of their synthetic study as they were able
to form the core seven-membered ring of Actinophyllic acid.

0 Q TBSOTY, EtsN o 0
N, o Cu(TBS), DCM;
DCE BnN 0.5 M HCI BnN
—_— —
BN O 50 - 60% 73%
N H
OTBDPS OTBDPS OTBDPS
3.6 35 3.4
OTBDPS
Pd(PPhs), Sc(0Th)3
MeOCO,allyl PhNHNH, ZnCly
THF DCM Tol.
—_— —_— —_— H
91% 64% over \
2 steps '
N N
OTBDPS OTBDPS H o Bn
3.11 3.12 3.3

Scheme 3.3 Synthesis of Key Indole Intermediate 3.3
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In 2012, Taniguchi developed a transannular acyl radical cylization protocol to
produce the core of Actinophyllic acid.® Their target compound 3.13 would result from
sequential dialkylation of an amine and at the a-position of ketone 3.14 (Scheme 3.4). It
was thought that 3.14 would be produced from the transannular acyl radical cyclization of
3.15. The cyclization precursor 3.15 would be produced from a ring closing metathesis

and selenoester formation of 3.16.

e PE'N\‘ PhSeOC Zg EtO,C E‘g
H o (0] \_-—\
> CEW : \_J — @g_\ N
'E,l N N N N\
g

Pg

3.13 3.14 3.15 3.16

Scheme 3.4 Taniguchi’s Retrosynthetic Plan

From chloroindole 3.17, a Suzuki-Miyaura cross coupling produced vinyl indole
3.18, which was carried forward crude to a Horner-Wadworth-Emmons homologation to
provide a,B-unsaturated ester 3.19 in a 92% yield over the two steps (Scheme 3.5).
Michael addition with TMS-protected homo-propargyl amine furnished 3.20 in an 85%
yield. The amine was re-protected with a Cbz group to give 3.21, which was subjected to
ring-closing metathesis to provide 3.22 with the required eight-membered ring. Ester
saponification followed by selenoester formation provided them with the radical
cyclization precursor 3.23.
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Pd(OAC),

dppp CO,Et AN NHTMS CO,Et
SN K,COs SN (Et0),POCH,CO,Et § H
i-ProH NaH, THF n-BuLi, THF N
Ny —— N\  ——— —_— M=
N 2 BEK N 92% over N 85% N
Boc Boc 2 steps N \ N N\
Boc Boc
3.17 3.18 3.19 3.20
1. LIOHH,0
CbzCl CO,Et EtOC (o, THF:H20 PhSeOC
i-Pr,NEt Cbz Grubbs 2 N 2. (PhSe),, PBug N
MeCN N\/\/ DCM DCM
— — —_——— -_————
93% N 50% N~ 89% h—r
NN N N
Boc Boc Boc
3.21 3.22 323

Scheme 3.5 Synthesis of Acyl Radical Precursor

Gratifyingly, the radical cyclization to form the tetracyclic core of Actinophyllic
acid 3.24, worked well giving the correct regiochemistry of radical attack (Scheme 3.6).
This is not too surprising as the radical formed after cyclization would be more stable o
to the indole due its resonance with the benzylic C-3 position of the indole. Reduction of
ketone 3.24 with sodium borohydride, Cbz deprotection of 3.25 followed by reductive
amination led to aminoalcohol 3.27. The secondary alcohol was then oxidized back up to
the ketone, which underwent alkylation to form the pentacyclic core of Actinophyllic
acid 3.28. Due to the lack of functionalization adjacent to the 2-position of the indole, this

would be the end of their synthetic study.
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PhSeOC ), BuzSnH sz ChzN HN,
N ACN NaBH,4 H H,, Pd/C H
ToI MeOH OH EtOH OH
—
N_A 85% N A
N N N
Boc Boc Boc Boc
3.23 3.24 3.25 3.26
IBX
K,CO3, DMSO; N
NaBH(OAc)3 t-BuOLi
___UBUOH H o
63% over 71% N
three steps N
Boc Boc
3.27 3.28

Scheme 3.6 Acyl Radical Cyclization and Synthesis of Advanced intermediate 3.28

The group of Maldonado and co-workers believed that they could form the 1-
azabicyclo[4.2.1]nonane core of Actinophyllic acid® through a non-carbonyl mediated
Mannich reaction that was previously developed by Wenkert.'? Starting from symmetric
dichloride 3.29, they were able to mono-alkylated with o-nitrobenzenesulfonamide to
form 3.30 (Scheme 3.7). This was then subjected to macrocyclization to form their
desired protected cyclization precursor 3.31. Simple treatment with benzenethiol allowed
for deprotection of the o-nosyl protecting group 3.32, readying their substrate for
cyclization. Taking 3.32 with indole-3-carboxaldehyde 3.33 and heating in toluene,
followed by addition of acid furnished 3.35. While they did get the cyclization they
expected, the seven-membered ring is anti with respect to the indole. They are currently

looking into methods to attempt to reverse this chemoselectivity.
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PhSH,
o n-Bu,NOH Y
0 MeCN o}
—_—
55-65%
NsN N
H
3.31 3.32
(@]
H*, Benzene
— Q
52% N\
N
H
3.35

Scheme 3.7 Maldonado’s Synthesis of the Actinophyllic Acid Core

Coldham developed a comparable route to Maldonado where the envisioned

making a similar bicyclic core.'* Taking pyrrolidinone 3.36 neat with sodium metal, and

adding butyrolactone gave them acid 3.37. Treating this under dehydrating conditions

provided them with tetrahydropyrrolizine 3.38, which then could be ring-opened with a

biphasic solution of potassium phosphate and CbzCl to form azocinone 3.39. Silyl enol

ether formation followed by deprotection of the Cbz group gave key substrate 3.41 for

their Mannich cyclization.
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1 Na neat
soda lime CbzCl 0
Kugelrohr K3POy4 (ag)
dlstlllatlon C|/\> Tol.
NH CO,H
d 65% d N\ 52% N
Chz
3.38 3.39
0OTBS OTBS
TBSOTf, NEt; — H,, Pd(OH), —
DCM MeOH
_— — -
99% N 95% N
Chz H
3.40 341

Scheme 3.8 Synthesis of Addition Precursor

Taking indole 3.42 and 3.41 under Brgnsted acidic conditions only furnished their
Mannich adduct 3.43 in a 40% optimized yield. Similar to the result observed by
Maldonado, the carbonyl functionality is anti to the malonyl on the 2-position of the

indole.

O OTBS BPhg o) N
Y — PhCF4H,0 e
CO,Me —
3 i 40%
0
N COMe N \__fOoMe
Boc H

N CO,Me
Boc

342 341 343
Scheme 3.9 Coldham’s Synthesis of the Core of Actinophyllic Acid
Section 3.3 Total Syntheses of Actinophyllic Acid
Overman first synthesized Actinophyllic acid in 2008,'? and improved the end

game of their synthesis in 2010."* The seminal total synthesis of Overman and the total

synthesis reported by Martin in 2013* will be described herein.
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Section 3.3.1 Overman’s Total Synthesis of Actinophyllic Acid

The retrosynthetic plan for the synthesis of actinophyllic acid is shown below in
Scheme 3.10. The proposed final step would be a tetrahydrofuran-ketal ring closing
which would lead back to diester 3.44. 3.44 could be formed through an aza-Cope-
Mannich cylization of 3.45, which could be generated from a [3,3] rearrangement of
iminium 3.46. Formation of 3.47 would arise from an oxidative enolate cyclization of
3.48.

aza-Cope-
HN Mannlch
HO,C., RO,Cy,
/N
RO,C
O

OH
3.1 . 3.45
0]
13,3] -NH S NPG
\
— — \ — {__FOoR
1,
CO,R
N CcoR ° N COR
3.46 347 3.48

Scheme 3.10 Overman’s Retrosynthetic Strategy

The magnesium-generated enolate of t-butyl malonate 3.49, was added into o-
nitrophenyl acetyl chloride, to form keto-ester 3.50 (Scheme 3.11). Reduction of the
nitro group followed by cyclization onto the ketone gave indole-2-malonate 3.51. Taking
bromo-piperidinone 3.52 and indole 3.51, alkylation at the 3-position formed 3.53 which
was now ready for the desired oxidative enolate cyclization. Treatment of 3.53 with LDA
and an iron (111) oxidant furnished tetracyclic ketone 3.54 in a 60-63% yield, which could

be completed on a multigram scale.
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1. Mg(OMe),, MeOH

2. C(\co cl
NO, Pd(OH),/C

o} Hy, i-PrOH
CO-t-Bu THF 2 CO,t-Bu
2 - o CoftBu o N\ z
COt-Bu 78% NO, CO,t-Bu 69% m COt-Bu
3.49 3.50 3.51
o
N TBr o LDA
Boc NBoc [Fe(DMF)3Cl,][FeCly]
3.52 CO,t-Bu THF
> A\ >
85% N  CO,t-Bu 60 - 63%
H

3.53

Scheme 3.11 Oxidative Enolate Coupling

A Luche mediated Grignard addition to ketone 3.54 provided access to their key
rearrangement substrate 3.55. Removal of the Boc protecting group, followed by iminium
formation with p-formaldehyde set up their rearrangement/aza-Cope-Mannich cascade to
form 3.56 in a superb 62% yield. Next 3.56 was deprotonated to give a stereoselective
enolate which was then trapped with monomeric formaldehyde and subsequently cyclized
onto the ketone to form Actinophyllic acid. This completed the first total synthesis of

Actinophyllic acid in an 8% overall yield with the isolation of only 7 intermediates.
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1.TFA
2. (CH,0),, MeCN
3. 0.5M HCI:MeOH;
ag. Na,COj3 then TFA

-
62%

1. LDA, CH,0O; TFA
2. 4M HCI

Yy

MeO,C
50%

Scheme 3.12 Overman’s Completed Total Synthesis of Actinophyllic Acid

Section 3.3.2 Martin’s Total Synthesis

In 2013, Martin developed an elegant synthesis of Actinophyllic acid which
employed the use of a cascade reaction protocol. They envisioned that 3.1 could be made
through refunctionalization of 3.57. Synthesis of the pyrrolidine ring from 3.58 could be
formed in a similar method to that of Taniguchi (vide supra). Formation of 3.58 would

come from a carbocation/n-nucleophile cascade reaction from indole 3.59 and diene 3.60.
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N N
OH H ¢ H o)
o) :’ A\ : A\
OBn OBn
N N
H OBn H OBn
3.1 3.57 3.58
OSiR3
AcO OBn =
— ©f\§—{ /
N OBn N
H 1
RO,C
3.59 3.60

Scheme 3.13 Martin’s Retrosynthetic Analysis

Taking indole 3.61, they could form the dianionic species, which was added into
1,3-dibenzyloxyacetone. The product of was then protected in situ to form 3.59 in an
85% yield (Scheme 3.14).

1. n-BuLi, THF
2.COz g
3. t-BuLi
4.
o)

BnO\)I\,OBn co 9B

A
Y e O
N 5.Ac,0 N OBn

H 85% H

3.61 3.59
Scheme 3.14 Synthesis of Cyclization Precursor

Azepinone 3.62 was protected with Alloc-Cl and trapped as the silyl enol ether to
form the desired diene 3.63 for the cyclization (Scheme 3.15). After extensive
optimization of conditions, the cascade was promoted with TMSOTf, followed by
addition of TBAF to remove the silyl protecting group provided ketone 3.64 in an
excellent 92% vyield. Boc protection of the indole, followed by alloc deprotection
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provided secondary amine 3.65. Pyrrolidine ring formation was completed in a similar

fashion to Taniguchi (vide supra) to arrive at 3.66 in an 83% yield.

1. n-BuLi THF; 3.59, TMSOTf
Alloc-Cl 2,6-(t-Bu),Pyr Alloc <
O 2.NaHMDS, TIPSCI OTIPS DCM; N4
THF = TBAF H 0
> _——
/ / \
N 7% N 92% OBn
! N
H Alloc H
OBn
3.62 3.63 3.64
1. Boc,DMAP, Tol 1. CICHZCHO NaBH(OAc)3
2. Pdy(dba)s, dppb,
NDMBA, THF 2.t-BuONa, t BuOH/THF
76% 83% B
Boc n
Bn Boc Bn
3. 3.66

Scheme 3.15 Carbocation/n-nucleophile Cascade

Removal of the Boc group on the indole and removal of the benzyl protecting
groups provided 3.67 as the HCI salt; all that remained was oxidation of the neopentyl
alcohol to form Actinophyllic acid. After many attempts, they could oxidize the alcohol
to the aldehyde with IBX, followed by addition of N-hydroxysuccinimide in the presence
of excess IBX allowed for formation of the succinic ester. This underwent simple
saponification to form Actinophyllic acid 3.1 in only 10 overall steps. Analogues of
Actinophyllic acid were generated using this protocol, as the choice of substitution on

amine 3.62 can lead to a library of products.
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Scheme 3.16 Martin’s End Game

Section 3.4 Oxidative Radical Cyclizations

Oxidative radical cyclizations of 1,3-diones, B-keto-esters and malonates into a

variety of different aromatic systems have been thoroughly investigated by the groups of

Chuang and Snider.”>*" The Kerr group has investigated this reaction as well by using

tethered malonate and B-keto-ester componds under superstoichiometric manganese (111)

acetate and cyclizing them into indoles, pyrroles and indolines (Scheme 3.17).*® The

tether was always from the nitrogen atom of the heterocycle and the yield of the

transformation was not deteriorated by the electron-withdrawing nature of the amide

functionality.

S ” [\}\/\(COZM
X CO,Me
3.68
X=0orHH
N\ Mn(OAc); N\ COoMe
\ CO,Me MeOH N CO,Me
—_—
CO,Me
X X
3.70 3.71

X =0, H,H, or Ph,H

Scheme 3.17 Manganese Mediated Oxidative Cyclizations
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Though only a few pyrrole examples were tested, when there was substitution on
the pyrrole ring, a mixture of regiochemical isomers was obtained. While substitution on
the 5-position of the indole was well tolerated, electron-deficient substitution at the 3-
position of the indole was not amenable to these reaction conditions. Interestingly, with a
slightly larger excess of manganese (I1l) acetate, indoline could also be used in this
reaction. The indoline was oxidized to the indole under these conditions and subsequently
cyclized onto the indole ring. The success of this methodology has lent itself to the study
of natural product synthesis. The Kerr group used this methodology to complete the total
synthesis of mersicarpine.’® A similar cyclization was used by the Rawal group towards

the synthesis of the core of the welwitindolinones.?

N
N\ o) Mn(OAc)s I OH
N)\/\Q Aoon :
—»
N
0,
o 60%
o 0
3.72 3.74
MeO,C Mn(OAc)3
AcOH, NaOAc
—>
N\ 82%
N
Me
3.75 3.76

Scheme 3.18 Applications of the Manganese Mediated Oxidative Cyclization

Section 3.5 Retrosynthetic Proposal for Actinophyllic Acid

Upon initial inspection of Actinophyllic Acid we deemed that our end game could
coincide with the synthesis of Overman and simply finish with the tetrahydrofuran ring
formation (Scheme 3.19). 3.77 would come from a deprotection and N-alkylation of the
pyrrolidine 3.78. We believed that the next bond disconnection would be the most
difficult one to form (3.78-3.79), due to the necessary formation of a 1,4-dicarbonyl

species. We envisioned that this functionality could be installed by either an
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intermolecular acyl radical addition or a Stetter reaction between 3.79 and 3.80 followed
by a manganese mediated radical cyclization. 3.79 could be formed by a Krapcho
dealkoxycarbonylation and ester reduction of 3.81. Pyrrolidine 3.81 could come from the
previously established three-component coupling developed by the Kerr group (as

described in Chapter 1), from easily accessible starting materials.

N 0 R'N o)
2 OLG
N\ N\
N COyMe N CO,Me
H COZMe H COZMe
3.77 3.78

R'N 0 R'N CO,R O\ o o
— { — { CoR —> ©\/\§ ROJX\OR
N

N N T
Ts Ts s
3.79 3.81 3.82 3.83
CO,Me R-NH,
MeOZC
3.80

Scheme 3.19 Proposed Retrosynthetic Plan for Actinophyllic Acid

Section 3.6 Results and Discussion
Section 3.6.1 Pyrrolidine Ring Formation

Upon investigation of the pyrrolidine ring formation, the components of the
reaction had to be selected carefully. First, we need to use an amine that had either
substitution that could be directly converted to a desired functionality later, or a cleavable
functionality so that the amine could be manipulated later. Also, we needed to consider
substitution on the indole ring as the product that we would be forming would have a
gramine-type framework, which have been known to fragment as an indolequinone-
methide? as described in the earlier synthetic studies. We decided upon N-tosylindole-3-

carboxaldehyde as our indole partner, as this protection should attenuate the
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nucleophilicity of the indole ring and stop any gramine-type fragmentation. We also

decided to start with benzylamine as this protecting group could easily be removed later

for further manipulations. We attempted to use the optimized conditions from the

methodology, but unfortunately we saw no product formation (Table 3.1, entry 1. We

next attempted Lewis acids that have been known to activate 1,1-cyclopropanediesters

towards ring opening events. Once again, none of these conditions formed any of the

desired pyrrolidine ring under both thermal and microwave conditions (Table 3.1, entries

2-8).
Table 3.1 Pyrrolidine Ring Formation Attempts
MeOZCKCOZMe
Oy [ BN 1 387 BnN COMe
A\ BnNH, ——>» N\ ﬂ \ CO,Me
N N Toluene N
Ts Ts Ts
3.82 3.85 - 3.86 - 3.88
Entry Lewis Acid Conditions Time (h) Result
(20 mol %)
1 Yb(OTH); 80Cto 110C 16 No Reaction
2 Yb(OTHf); Microwave, 140°C 1 No Reaction
3 Sc(OTf)3 80Cto 110TC 16 No Reaction
4 Sc(OTHA); Microwave, 140°C 1 No Reaction
5 Sn(OTf), 80Cto 110TC 16 No Reaction
6 Sn(OTH), Microwave, 140°C 1 No Reaction
7 AICl; 80Ct0110C 16 No Reaction
8 AICl; Microwave, 140 C 1 No Reaction

Having no success at completing the three-component coupling required for

Actinophyllic _acid, we re-examined the pyrrolidine methodology.??> Upon further
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inspection, when the parent 1,1-cyclopropanediesters was used, only an aniline were used

to complete the cycloaddition (Scheme 3.20).

CO,Me
PhNH, CO,Me PhN
3.89 3.87
+ — ’\l”:’h — » R! COM
1 1 Yb(OTf), MeO,C 2Me
R-CHO R (10 mol%)
3.90 3.91 3.92
Ph. Ph. Ph.
N N N
):2 B B
Ph CO,M o co,Me S Cco,Me
MeO,C 2Me MeO,C 2 MeO,C )
3.93,76 % 3.94, 96 % 3.95, 95 %

Scheme 3.20 Selected Examples from Kerr’s Pyrrolidine Methodology

From this observation, we decided to use p-anisidine 3.96 as our amine source as
the aromatic ring could be cleavable at a later time, as well as it would give us a
diagnostic methyl peak in our NMR spectra. By making this adjustment, we were able to
generate desired pyrrolidine 3.98 in an 18% yield using the previously optimized
conditions (Table 3.2, entry 1). Completing the reaction using a microwave reactor
allowed for an increase in the yield to 61 % (Table 3.2, entry 2). And finally, increasing
the equivalents of the aldehyde and the amine from 1.2:1.2:1 to 2:2:1, the yield was
increased again to an 87 % vyield. Now that we had completed an efficient synthesis of
our desired pyrrolidine 3.98, we next focused our attention on the synthesis of 1,4-

dicarbonyl species.

www.manaraa.com



114

Table 3.2 Optimization of p-anisidine Pyrrolidine Ring Formation

MeO,C. CO,Me

X

o) [ pweN, |
N\ \ 3.87 PMPN CO,Me
Yb(OTf);
N\ PMP-NH,——————>» N\ —_— \ CO,Me
N N Toluene
Ts Ts 'I'\'Is
3.82 3.96 - 397 3.98
Entry Equivalents Conditions Time (h) Isolated
(Amine:Aldehyde:Cyclopropane) Yield (%)
1 1.2:1.2:1 110C 16 18
2 1.2:1.2:1 Microwave, 140C 3 61
3 2:2:1 Microwave, 140C 3 86

Section 3.6.2 Progress Towards Actinophyllic Acid

We first decided to work on the synthesis of the aldehyde substituted pyrrolidine

partner 3.79. To achieve this, we would first need to eliminate one of our ester

functionalities. Initial attempts to remove the ester using LiCl and NEt;** lead to no

decarboxylated product with slow decomposition starting material (Scheme 3.21). We

next attempted to use a sodium cyanide mediated Krapcho dealkoxycarbonylation®* and

from the crude NMR we appeared to be successful. For simplicity of purification, we

converted the acid generated by the reaction to the methyl ester by using TMS-

diazomethane.
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PMPN PMPN
CO,Me . .
2 LiCl, NEtz'HCI CO,Me
COZMe ------------------- >
DMF, microwave A\
N N
Ts Ts
3.98 3.100
PMPN 75 % over
2 steps
NaCHN TMSCHN,
DMSO CO,H
microwave N\ MeOH/Benzene
N
Ts
L 3.99 ]

Scheme 3.21 Removal of one of the ester functionalities by Krapcho

Dealkoxycarbonylation

With the realization that under the Krapcho conditions we could generate a single
acid functionality, we thought that this would be a good intermediate for the synthesis of
our desired aldehyde. Using the same conditions as stated above, we reduced the acid
using borane and oxidized the resultant alcohol to the aldehyde using Swern conditions to
3.101 in a 60% isolated yield over the three steps (Scheme 3.22).

1. BHyMe,S, B(OMe),

THF
PMPN CO,Me NaCN PMPN 2. (COCl),, DMSO, PMPN _o
DMSO CO,H NEtz, DCM
COxMe —_— A\ > O\
microwave 60% over 3 steps
N N N
Ts Ts Ts
3.98 3.99 3.101

Scheme 3.22 Synthesis of Stetter Nucleophile 3.101
We decided to synthesize two different acceptors both of which could be carried

forward for the Stetter reaction. Taking mono-protected propanediol, we oxidized the

remaining alcohol up to the aldehyde in 90% yield using IBX (Scheme 3.23). From there
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we generated two separate acceptors, one using a Knoevenagel condensation to from
diester 3.105 and the other a Horner-Wadsworth-Emmons homologation to form

monoester 3.107.

O O

MeOJ;au\OMe MO /CO?Me
CO,Me
Py/AcOH 3.105
IBX
PMPO_~_OH — > PMPO_~° 75 %
3.102 90 % 3.103

I\
O O =
_O' OMe
3.106 3.107

NaH
50 %

Scheme 3.23 Synthesis of Potential Stetter/Acyl Radical Acceptors

With both reactive partners in hand, we attempted a Stetter reaction to build the
required 1,4-dicarbonyl species using alkylidene malonate 3.105, aldehyde 3.101 and
thiazolium catalyst 3.108, but unfortunately we did not obtain any product in the reaction.
Due to the difficult in scaling up the synthesis of 3.101, only one attempt at the Stetter

reaction was tried.
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+/—Ph
N
PMPN
=0 HO /» _
S ci
N 3.108
N CsCOs
Ts
\Z -
3.101 7< >
CO,Me
PMP =
© CO,Me
3.105

Scheme 3.24 Stetter Reaction Attempt

However, having synthesized both 3.105 and 3.107, we thought that maybe the
acyl radical addition could also be possible into either of them. Knowing that we could
form carboxylic acid 3.99 and also having the knowledge that we could manipulate this
acid a variety of ways, we envisioned generating a selenoester, which could undergo an
acyl radical addition into acceptor 3.105. We attempted to convert carboxylic acid 3.99 to
the corresponding selenoester 3.110; however under a variety of different conditions the

selenoester was never detected and only decomposition was observed (Scheme 3.25).

PMPN CO,Me NaCN PMPN (PhSe),, PBu, PMPN o
COM DMSO CO,H DCM
e —_— — >
A\ 2 ) A\ N\ SePh
microwave
N N N
Ts Ts Ts
3.98 3.99 3.110

Scheme 3.25 Attempted Synthesis of Selenoester 3.110

Having run into these difficulties with our intermolecular proposal, we believed
that we could synthesize a precursor for an intramolecular addition, similar to what we
had originally proposed. By adding the acceptor group to the pyrrolidine after
deprotection would give 3.111, which would now be prepared for the intramolecular
addition. The previous steps in the synthesis would remain the same (Scheme 3.26).
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MeO,C,
/ COzMe
N
:} 0
D CO,Me
2
N coMe Ny X
N
H
3.1 3.77 3.111
X = H, SePh
RN R'N COLR Oy oo
CO,R COR
p— p— R > \ ro OR
A\ A\
N
N N
Ts Ts Ts
3.112 3.81 3.82 3.83
O R-NH,
3.84
Eﬁo
o)
3.113

Scheme 3.26 Second Generation Retrosynthetic Plan

Taking monoester-pyrrolidine 3.100, we removed the PMP protecting group using
ceric ammonium nitrate (CAN)? to provide 3.114 in an 80% yield (Scheme 3.27).
Having 3.114 in hand, we attempted to acylate the nitrogen using acryloyl chloride, but
no product was observed. We also attempted a reductive amination using octanal (to
determine the potential for the reaction), but once again no product was detected.
However, when attempting the acylation with succinic anhydride, we obtained our
desired acylated product. Due to purification issues, we converted the acid to the methyl
ester using TMS-diazomethane and obtained the diester product 3.115 in an 83 % vyield.
Due to time constraints, this is where the forward progress for this project ended.
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3.113, pyridine MeO,C

DCM;
PMPN CAN HN TMSCHN> N
CO,Me CH3CN/H0 CO,Me MeOH/Benzene
A —_— \ T O co,Me
80% 83% A\
N N
Ts Ts N
Ts
3.100 3.114 3.115

Scheme 3.26 Pyrrolidine Acylation
Section 3.7 Summary and Future Work

In summary, we have developed a route to an advanced synthetic intermediate on
the pathway toward the synthesis of Actinophyllic acid. We further developed the three
component pyrrolidine reaction and taken advantage of the requirement of an aniline
derived amine for reactivity with cyclopropane 3.83. The removal of one of the ester
groups has been completed efficiently and the conversion of the remaining carbonyl
functionality to an aldehyde has been completed. The removal of the PMP protecting
group and acylation with succinic anhydride has allowed for the investigation of an
intramolecular variant for the forward synthesis. Future work for this project would be
converting the remaining ester on 3.98 to selenoester 3.110 and determining if an
intermolecular acyl radical addition would be possible. Also, taking the diester 3.115 and
homologating the amide chain, would allow access to an intramolecular variant of either

the Stetter reaction or acyl radical addition.

Section 3.8 Experimental
General

Infrared spectra were obtained as thin films on NaCl plates using a Bruker Vector
33 FT-IR instrument. *H, and *C NMR experiments were performed on Varian Mercury
400, Varian Inova 600 and Inova 400 instruments and samples were obtained in CDCl3
(referenced to 7.26 ppm for *H and 77.0 for *3C). Coupling constants (J) are in Hz. The
multiplicities of the signals are described using the following abbreviations: s = singlet, d

= doublet, t = triplet, q = quartet, m = multiplet, br = broad. High resolution mass spectra
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(HRMS) were obtained on a Finnigan MAT 8200 spectrometer at 70 eV. Toluene,
tetrahydrofuran (THF), ether, acetonitrile (MeCN) and dichloromethane (DCM) were
dried and deoxygenated by passing the nitrogen purged solvents through activated
alumina columns. All other reagents and solvents were used as purchased from Aldrich,
Alfa Aesar, or Caledon. Reaction progress was followed by thin layer chromatography
(TLC) (EM Science, silica gel 60 Fys4) visualizing with UV light, and the plates
developed using acidic anisaldehyde. Flash chromatography was performed using silica
gel purchased from Silicycle Chemical Division Inc. (230-400 mesh). High-pressure
reactions were carried out on a LECO™ Tempres High-Pressure chemical reactor.

Microwave reactions were performed in a 400 W Biotage Initiator 2.0 microwave reactor.

Procedure for Pyrrolidine Ring Formation

The procedure is adapted from the literature.??

N-tosylindole-3-carboxaldehyde 3.82 and p-anisidine 3.95 were dissolved in dry
toluene and stirred over activated 4 A molecular sieves for 1 h. The imine solution was
then transferred to a microwave vial, then YbOTf; (20 mol %) and cyclopropane 3.86
were added, and the mixture was heated to 140° C for 3 h. The progress of the reaction
was monitored by TLC. The reaction mixture was filtered and the solvent was removed.
The crude residue was purified by flash column chromatography (elution with

EtOAc/hexanes mixtures).

BMPN Reagents employed: 3.82 (0.379 g, 1.26 mmol); 3.96 (0.156 g,

CO2Me 1 27 mmol); YbOT#, (0.078 g, 0.126 mmol); 3.87 (0.100 g, 0.632
CO,Me

? mmol); Toluene (3 mL); Yielded 3.98 as a yellowish foam, 86%

¥s (0.307 g, 0.546 mmol). *H-NMR (400 MHz, CDCls): § = 7.91-

7.87 (m, 1H), 7.67-7.63 (m, 1H), 7.48 (d, J = 8.2 Hz, 2H), 7.40 (s, 1H), 7.30-7.20 (m,
2H), 7.09 (d, J = 8.2 Hz, 2H), 6.68-6.63 and 6.38-6.33 (m, AA’BB’, 4H), 5.67 (s, 1H),
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3.81 (t, J = 7.8 Hz, 1H), 3.79 (s, 3H), 3.71 (s, 3H), 3.30-3.21 (m, 1H), 3.07-2.97 (m, 1H),
2.89 (s, 3H), 2.58 (dd, J = 12.1, 5.1 Hz, 1H), 2.31 (s, 3H).

Procedure of the Conversion of 3.98 to 3.100
The procedure was adapted from the literature.?*

To a solution of diester in wet DMSO was added NaCN. The reaction mixture
was then heated to 140°C under microwave irradiation for 3 h. The reaction was poured
into water and extracted three times with Et,O. The combined extracts were then washed
twice with water, once with brine and dried over MgSO,. The aqueous layer was then
acidified and re-extracted with Et,O three times. The combined extracts were then
washed once with brine and concentrated. The resultant mixture was found to contain the
dealkoxycarbonylated mono-acid product. This acid was then dissolved in benzene and
methanol (2:1) and treated with 2.0 M solution of TMSCHN, to reform the required
methyl ester. The solution was then concentrated and then purified via flash column

chromatography (elution with EtOAc/hexanes mixtures).

Reagents employed: 3.98 (0.059 g, 0.105 mmol); NaCN (0.026 g,

PMPN
co,Me 0531 mmol); DMSO (3 mL); TMSCHN, (0.105 mL, 0.210
A\ mmol); Yielded 3.100 as an orange oil, 86% (0.046 g, 0.091
L mmol). *H-NMR (600 MHz, CDCl5): & = 7.98 (d, J = 8.2 Hz, 1H),

7.64 (d, J = 7.6 Hz, 1H), 7.58-7.55 and 7.16-7.13 (m, AA’BB’, 4H), 7.36-7.32 (m, 1H),
7.31 (s, 1H), 7.29-7.27 (m, 1H), 6.73-6.70 and 6.44-6.41 (m, AA’BB’, 4H), 5.13 (s, 1H),
3.75 (s, 3H), 3.75 (s, 3H), 3.74-3.70 (m, 1H), 3.50-3.45 (m, 1H), 3.15-3.13 (m, 1H), 2.47-
2.40 (m, 1H), 2.34 (s, 3H), 2.30-2.23 (m, 1H).
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Procedure for the conversion of 3.96 to 3.99

To a solution of diester in wet DMSO was added NaCN. The reaction mixture
was then heated to 140 °C under microwave irradiation for 3 h. The reaction was poured
into water and extracted three times with Et,0. The combined extracts were then washed
twice with water, once with brine and dried over MgSO,. The aqueous layer was then
acidified and re-extracted with Et,O three times. The comined extracts were then washed
once with brine and concentrated. The resultant mixture was found to contain the

dealkoxycarbonylated mono-acid product.

Reagents employed: 3.98 (0.270 g, 0.480 mmol); NaCN (0.118 g,

PMPN
co,H 241 mmol); DMSO (3 mL); Crude acid taken forward for the
A\ reduction to primary alcohol.
N
Ts

A solution of crude acid in THF was added slowly to a cooled solution (0° C) of
BH3;SMe, and B(OMe); in THF. The reaction mixture was stirred overnight and
quenched with methanol. The solvent was removed and the crude primary alcohol residue

was carried forward for oxidation.

Reagents employed: 3.99 (0.235 g, 0.479 mmol); BH3SMe; (0.062

PMPN
OH g, 0.816 mmol); B(OMe)z (0.084 g, 0.808 mmol); THF (5 mL);
A\ The crude alcohol was carried forward to the next step.
N
Ts
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To a solution of oxalyl chloride in DCM at -78° C was slowly added a solution of
DMSO in DCM. After stirring for 10 mins, a solution of alcohol in DMC was added and
stirred for 30 mins. NEt; was then added and after 10 mins the reaction was warmed to 0°
C and a 1:10 H,O:DCM mixture was added. The aqueous layer was extracted three times
with DCM, the combined organic layers were washed with saturated sodium hydrogen
carbonate, dried over MgSO,4 and concentrated. The residue was then purified via flash

column chromatography (elution of EtOAc/hexanes mixtures).

Reagents employed: alcohol (0.229 g, 0.480 mmol); oxalyl chloride

PMPN
=0 (0.167 mL, 1.91 mmol); DMSO (0.272 mL, 3.84 mmol); NEt; (0.668
A\ mL, 4.79 mmol); DCM (10 mL); Yielded 3.101 as a yellow oil, 60%
¥S over the three steps (0.135 g, 0.284 mmol). *H-NMR (600 MHz,

CDCl3): (mixture of diastereomers) & = 9.85 (s, 1H), 9.82 (s, 1H), 8.00 (d, J = 8.2 Hz,
1H), 7.89 (d, J = 8.2 Hz, 1H), 7.68 (d, J = 8.2 Hz, 1H), 7.59-7.55 (m, 3H), 7.52-7.48 (m,
3H), 7.36-7.32 (m, 2H), 7.28-7.23 (m, 2H), 7.20-7.16 (m, 1H), 7.16-7.13 (m, 2H), 7.08
(d, J=8.2 Hz, 2H), 6.94 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 2.9 Hz, 1H), 6.74-6.71 and 6.47-
6.44 (m, AA’BB’, 4H), 6.53 (dd, J = 8.8, 2.9 Hz, 1H), 5.23 (s, 1H), 5.20 (d,J = 7.0 Hz,
1H), 4.01-3.97 (m, 1H), 3.75 (s, 3H), 3.74-3.70 (m, 2H), 3.69 (s, 3H), 3.51-3.47 (m, AB,
1H), 3.30-3.22 (m, 2H), 3.08 (br d, J = 7.6 Hz, 1H), 2.90-2.86 (m, AB, 1H), 2.45-2.40 (m,
2H), 2.34 (s, 3H), 2.29 (s, 3H), 2.28-2.23 (m, 1H).

Procedure for the oxidation of alcohol 3.102 to aldehyde 3.103

The alcohol was dissolved in EtOAc and IBX was added to the solution. The reaction
was heated to reflux (77°C) for 3 h. The reaction mixture was then filtered through Celite

and the solvent was removed. The crude residue was pure enough to carry forward.
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PMPO._~2C Reagents employed: 3.102 (0.210 g, 1.15 mmol); IBX (0.644 g, 2.30
mmol); EtOAc (4 mL); Yielded 3.103 as a colourless oil, 90% (0.178 g, 0.988 mmol).
'"H-NMR (400 MHz, CDCl3): 6 =9.87 (t, J = 1.6 Hz, 1H), 6.85-6.84 (m, AA’BB’, 4H),
4.27 (t, J = 6.3 Hz, 2H), 3.77 (s, 3H), 2.88 (dt, J = 6.3, 1.6 Hz, 2H).

Procedure for the Horner-Wadsworth-Emmons homologation of 3.101

NaH was added portionwise to a solution of phosphonate in THF at 0° C. The
solution was stirred for 30 mins, until the evolution of H, ceased. The aldehyde was
dissolved in DCM and added dropwise to the reaction mixture. After the reaction was
complete as monitored by TLC (30% EtOAc:hexanes), the reaction was quenched with
water. EtOAc was added at the layers were separated. The aqueous layer was extracted
three times with EtOAc and the combined organic layers were washed with brine and
dried over MgSQ,. The crude residue was then purified by flash column chromatography
(elution with EtOAc/hexanes mixtures).

PMPO\/\/\COZMe Reagents employed: 3.103 (0.819 g, 4.54 mmol); 3.106 (1.00
mL, 6.82 mmol); NaH (0.303 g, 7.58 mmol); THF (10 mL); DCM (1 mL); Yielded 3.107
as a yellow oil, 50% (0.537 g, 2.27 mmol). *H-NMR (400 MHz, CDCls): § = 7.05 (dt, J =
15.6, 7.0 Hz, 1H), 6.83 (s, 4H), 5.96 (dt, J = 15.6, 1.6 Hz, 1H), 4.03 (t, J = 6.2 Hz, 2H),
3.77 (s, 3H), 3.74 (s, 3H), 2.65 (ddt, J = 7.0, 6.2, 1.6 Hz, 2H).

Procedure for the removal of the PMP protecting group

The procedure was following a literature procedure.”
A solution of PMP protected amine in acetonitrile was cooled to 0° C and ceric

ammonium nitrate in water was added dropwise. After the reaction was complete as
monitored by TLC (30% EtOAc:hexanes), the solution was diluted with EtOAc and the
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layers were separated. The organic was washed with water, brine and then dried over
MgSOQO,. The crude residue was purified by flash column chromatography (elution of

EtOAc/hexanes mixtures).

Reagents employed: 3.100 (0.068 g, 0.135 mmol); ceric

HN
co,Me ammonium nitrate (0.223 g, 0.407 mmol); acetonitrile (4 mL);
A\ water (1 mL); Yielded 3.114 as a yellow oil, 80% (0.043 g, 0.108
N mmol). *H-NMR (600 MHz, CDCly): & = 7.96 (d, J = 8.2 Hz, 1H),

7.76-7.73 and 7.21-7.18 (m, AA’BB’, 4H), 7.60 (d, J = 8.2 Hz, 1H), 7.56 (s, 1H), 7.32-
7.28 (m, 1H), 7.23-7.21 (m, 1H), 6.63 (s, 1H), 4.64 (d, J = 6.4 Hz, 1H), 3.68 (s, 3H),
3.22-3.17 (m, 2H), 3.10-3.06 (m, 1H), 2.32 (s, 3H), 2.25-2.14 (m, 2H).

Procedure for the acylation of 3.109

Succinic anhydride was added to a solution of pyrrolidine in DCM. Pyridine was
added to the solution and the reaction was heated to reflux (115°C) overnight. After the
reaction was complete as monitored by TLC (30% EtOAc:hexanes), the solution was
diluted with EtOAc, washed with aqueous CuSQO, and the layers were separated. The
organic layer was washed two more times with aqueous CuSQ,, once with brine and
dried over MgSO,. The residue was found to contain an acid, for ease of isolation the
acid was converted to the methyl ester. This acid was then dissolved in benzene and
methanol (2:1) and treated with 2.0 M solution of TMSCHN, to reform the required
methyl ester. The solution was then concentrated and then purified via flash column
chromatography (elution with EtOAc/hexanes mixtures, followed by 1% MeOH/DCM

eluent).
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Reagents employed: 3.114 (0.049 g, 0.123 mmol); 3.113
(0.025 g, 0.250 mmol); DCM (1 mL); pyridine (3 mL);
TMSCHN; (0.123 mL, 0.246 mmol); Yielded 3.115 as a
colourless oil, 83% (0.052 g, 0.101 mmol). *H-NMR (600

Ts MHz, CDCls3): (mixture of rotomers) 6 = 7.99 (d, J = 8.2
Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.79-7.76 (m, 2H), 7.72-7.69 (m, 2H), 7.54 (d, J = 7.6
Hz, 1H), 7.50 (d, J = 7.6 Hz, 1H), 7.44 (s, 1H), 7.38-7.35 (m, 2H), 7.30-7.25 (m, 3H),
7.24-7.18 (m, 4H), 5.69 (s, 1H), 5.53 (s, 1H), 3.97-3.92 (m, 1H), 3.85-3.79 (m, 1H), 3.78
(2s, 6H), 3.69 (s, 3H), 3.64 (s, 3H), 3.14-3.11 (m, 1H), 3.11-3.08 (m, 1H), 2.81-2.74 (m,
2H), 2.64-2.58 (m, 2H), 2.55-2.48 (m, 3H), 2.41-2.35 (m, 1H) 2.33 (s, 3H), 2.31 (s, 3H),
2.30-2.22 (m, 2H), 2.21-2.14 (m, 2H), 2.13-2.06 (m, 2H).
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Appendix 1 — NMR Spectral Data for Chapter 1
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“ﬂe():iZiC:F3

HN "O

Mosher derivative of
CO,Me enantioenriched material:
PE.NMR

JJ J

-68.2 -68.4 -68.6 -68.8 -69.0 -69.2 -69.4 -69.6 -69.8 ppm

s
0.95

0.05

s Mosher derivative of

racemic material:

MeoihCF
HN (@] 19F_NMR
@A/\cozm

-68.2 -68.4 -68.6 -68.8 -69.0 -69.2 -69.4 -69.6 -69.8 ppm

e
0.53

0.50

ol L le_i})
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HG 9-204-1

Sample Name: Ph
Huck

Data Collected on: MeO CF3
nmrm400.chem.uweo.ca-mercury400

Archive directory:
/home/data/Ferr/Huck O O

Sample directory:
HG 9-204-1 Feb 5 2013 01

FidFile: FLUORINE OT BS

Pulse Sequence: FLUORINE (s2pul)
Solvent: cdcl3
Data collected on: Feb 5 2013

Temp. 25.0 C / 2928.1 K
Sample #7, Operator: Kerr

Relax. delay 2.000 sec
Pulse 30.0 degrees
Acg. time 0.736 sec
Width 86956.5 Hz
32 repetitions
OBSERVE F19, 376.4515719 MHz
DATA PROCESSING
FT size 131072
Total time 1 min 36 sec

-71.1 -71.2 -71.3 -71.4 -71.5 -71.6 -71.7 -71.8 -71.9 ppm
[E— [E—
50.00
50.41
ME 2-205

Sample Name:

Huck
Data Collected on: Ph
mmrm400.chem.uwo.ca-mercury400
Archive directory: Meo CF3
/home/data/Kerr/Huck
Sample directory:
ME 8-205_Feb 5_2013 01 0 0
FidFile: FLUORINE OTBS
Pulse Sequence: FLUORINE (s2pul)
Solvent: cdcl3
Data collected on: Feb 5 2013

Temp. 25.0 C / 298.1 K
Sample #6, Operator: Kerr

Relax. delay 1.000 sec
Pulse 30.0 degrees

Acqg. time 0.736 sec

Width 86956.5 Hz

16 repetitions

OBSERVE F19, 376.451571% MHz
DATA PROCESSING

FT size 131072

Total time 0 min 36 sec

-71.1 -71.2 -71.3 -71.4 -71.5 -71.6 -71.7 -71.8 -71.9 ppm

[ L
0.00
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ME=E=IG7

Sample Name:
Mike E
Data Collected on:
nmrm400.chem.uwo.ca-mercury400
Archive directory:
/home/data/Kerr/Mike E
Sample directory:
ME-8-167 Janlé_13 01
FidFile: FLUORINE

Pulse Sequence: FLUORINE (s2pul)
Solvent: cdcl3
Data collected on: Jan 16 2013

Temp. 25.0 C / 298.1 K
Sample #18, Operator: Kerr

Relax. delay 1.000 sec
Pulse 30.0 degrees
Acq. time 0.736 sec
Width 86956.5 Hz

16 repetitions
OBSERVE F19, 376.4515719 MHz
DATA PROCESSING

FT size 131072

Total time 0 min 36 sec

MeO CF3

o O

SN 0TBS

-71.1 -71.2 -71.3 -71.4
e —
50.00
. 50.86
Sample Name:

Mike E
Data Collected on:
nmrm4 00.chem.uwo.ca-mercury400
Archive directory:
/home/data/Kerr/Mike E
Sample directory:
ME-8-187 Jan23 13 01
FidFile: FLUORINE

Pulse Sequence: FLUORINE (s2pul)
Solvent: cdcl3
Data collected on: Jan 23 2013

Temp. 25.0 C / 298.1 K
Sample #11, Operator: Kerr

Relax. delay 1.000 sec
Pulse 30.0 degrees

Acg. time 0.736 sec

Width 86956.5 Hz

16 repetitions

OBSERVE F19, 376.4515719 MHz
DATA PROCESSING

FT size 131072
Total time 0 min 36 sec
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Appendix 2 — NMR Spectral Data for Chapter 2
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Appendix 3 — NMR Spectral Data for Chapter 3
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